Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(10): 9825-9840, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35534586

RESUMO

More effective prognostic and diagnostic tools are urgently required for early detecting and treating triple-negative breast cancer, which is the most acute type of breast cancer because of its lower survival rate, aggressiveness, and non-response to various common treatments. So, it remains the most harmful malignancy for women worldwide. Recently, circular RNAs, as a group of non-coding RNAs, with covalently closed loop and high stability have been discovered, which can modulate gene expression through competing with endogenous microRNA sponges. This finding provided further insight into novel approaches for controlling genes affected in many disorders and malignancies. This review concentrates on the dysregulated expression of circRNAs like their diagnostic and prognostic values in TNBC. This review aims to focus on the abnormal expression of circRNAs and their diagnostic and prognostic values in TNBC. We used PubMed, Embase, and Web of Science databases and ClinicalTrials.gov to systematically search for all relevant clinical studies. This review is based on articles published in databases up to April 2022 with the following keywords: "Circular RNA", "CircRNA", "Triple-Negative Breast Cancer" and "TNBC". We conducted a review of published CircRNA profiled-research articles to identify candidate CircRNA biomarkers for TNBC. The review is registered on JBI at https://jbi.global/systematic-review-register . Accumulating evidence has shown that several circRNAs are downregulated and some are upregulated in TNBC. The results of these studies confirm that circRNAs might be potential biomarkers with the diagnostic, prognostic, and therapeutic target value for TNBC. We also consider the connection between circRNAs and TNBC cell proliferation, apoptosis, metastasis, and chemotherapy resistance and sensitivity.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Biomarcadores , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Biomed Pharmacother ; 148: 112743, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228065

RESUMO

Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Terapia Genética/métodos , Viroses/terapia , COVID-19/terapia , Genoma Viral , Infecções por HIV/terapia , Hepatite B/terapia , Infecções por Herpesviridae/terapia , Humanos , Infecções por Papillomavirus/terapia , SARS-CoV-2
3.
J Mol Neurosci ; 72(2): 226-238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811713

RESUMO

Schizophrenia is a severe chronic debilitating disorder with millions of affected individuals. Diagnosis is based on clinical presentations, which are made when the progressive disease has appeared. Early diagnosis may help improve the clinical outcomes and response to treatments. Lack of a reliable molecular diagnostic invokes the identification of novel biomarkers. To elucidate the molecular basis of the disease, in this study we used two mRNA expression arrays, including GSE93987 and GSE38485, and one miRNA array, GSE54914, and meta-analysis was conducted for evaluation of mRNA expression arrays via metaDE package. Using WGCNA package, we performed network analysis for both mRNA expression arrays separately. Then, we constructed protein-protein interaction network for significant modules. Limma package was employed to analyze the miRNA array for identification of dysregulated miRNAs (DEMs). Using genes of significant modules and DEMs, a mRNA-miRNA network was constructed and hub genes and miRNAs were identified. To confirm the dysregulated genes, expression values were evaluated through available datasets including GSE62333, GSE93987, and GSE38485. The ability of the detected hub miRNAs to discriminate schizophrenia from healthy controls was evaluated by assessing the receiver-operating curve. Finally, the expression levels of genes and miRNAs were evaluated in 40 schizophrenia patients compared with healthy controls via Real-Time PCR. The results confirmed dysregulation of hsa-miR-574-5P, hsa-miR-1827, hsa-miR-4429, CREBRF, ARPP19, TGFBR2, and YWHAZ in blood samples of schizophrenia patients. In conclusion, three miRNAs including hsa-miR-574-5P, hsa-miR-1827, and hsa-miR-4429 are suggested as potential biomarkers for diagnosis of schizophrenia.


Assuntos
MicroRNAs , Esquizofrenia , Biomarcadores/metabolismo , Humanos , MicroRNAs/metabolismo , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/genética
4.
Biomed Pharmacother ; 145: 112265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749054

RESUMO

Advances in high-throughput sequencing over the past decades have led to the identification of thousands of non-coding RNAs (ncRNAs), which play a major role in regulating gene expression. One emerging class of ncRNAs is the natural antisense transcripts (NATs), the RNA molecules transcribed from the opposite strand of a protein-coding gene locus. NATs are known to concordantly and discordantly regulate gene expression in both cis and trans manners at the transcriptional, post-transcriptional, translational, and epigenetic levels. Aberrant expression of NATs can therefore cause dysregulation in many biological pathways and has been observed in many genetic diseases. This review outlines the involvements and mechanisms of NATs in the pathogenesis of various diseases, with a special emphasis on neurodegenerative diseases and cancer. We also summarize recent findings on NAT knockdown and/or overexpression experiments and discuss the potential of NATs as promising targets for future gene therapies.


Assuntos
Neoplasias/genética , Doenças Neurodegenerativas/genética , RNA não Traduzido/genética , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/fisiopatologia , RNA Antissenso/genética , Transcrição Gênica/genética
5.
BMC Pediatr ; 21(1): 566, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895171

RESUMO

BACKGROUND: Kawasaki disease (KD) is a pediatric inflammatory disorder causes coronary artery complications. The disease overlapping manifestations with a set of symptomatically like diseases such as bacterial and viral infections, juvenile idiopathic arthritis, Henoch-Schönlein purpura, infection of unknown etiology, group-A streptococcal and adenoviral infections, and incomplete KD could lead to misdiagnosis of the disease. METHODS: In the present study, we applied weighted gene co-expression network analysis (WGCNA) to identify network modules of co-expressed genes in GSE73464 and also, limma package was used to identify the differentially expressed genes (DEGs) in KD expression arrays composed of GSE73464, GSE18606, GSE109351, and GSE68004. By merging the results of WGCNA and limma, we detected hub genes. Then, analyzed the peripheral blood mononuclear cells (PBMCs) of 16 patients and 8 control subjects using Real-Time Polymerase Chain Reaction (RT-PCR) to evaluate the previous results. RESULTS: We assessed the diagnostic potency of the screened genes by plotting the area under curve (AUC). We finally identified 2 genes CASP5(Caspase 5) and CR1(Complement C3b/C4b Receptor 1) which were shown to potentially discriminate KD from other similar diseases and also from healthy people. CONCLUSIONS: The results of RT-PCR and AUC confirmed the diagnostic potentials of two suggested biomarkers for KD.


Assuntos
Biologia Computacional , Síndrome de Linfonodos Mucocutâneos , Biomarcadores , Caspases , Criança , Redes Reguladoras de Genes , Humanos , Leucócitos Mononucleares , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Receptores de Complemento 3b
6.
Cancer Genet ; 258-259: 135-150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34773808

RESUMO

Glioblastoma multiforme (GBM) is the most common, most invasive, and malignant type of primary brain tumor with poor prognosis and poor survival rate. Using GSE22891 the expression and methylation status of same GBM patients was evaluated to identify key epigenetic genes in GBM. Using |log2FC| > 1 and FDR 〈 0.05 as the threshold, DEGs including 4910 downregulated and 2478 upregulated were screened and by |log2FC| 〉 0.2 and p-value < 0.05, 3223 DMCs were detected. By merging the results of DEGs and DMCs, 643 genes were selected for network analysis by WGCNA, and based on expression values three modules and by methylation values, one module was selected. Using STRING and Cytoscape databases, PPI network of genes of all modules were constructed separately. According to the PPI network, core genes were picked out. The expression status of core genes was evaluated using GSE77043, GSE42656, GSE30563, GSE22891, GSE15824, and GSE122498, and 50 genes were validated. The methylation status of 50 genes was explored using GSE50923, GSE22891, and GSE36245, and finally, 12 hub genes including ARHGEF7, RAB11FIP4, PPP1R16B, OLFM1, CLDN10, BCAT1, C1QB, C1QC, IFI16, NUP37, PARP9, and PCLAF were selected. Using GEPIA database, the expression and by cBioportal the survival plot and also scatterplot of methylation versus expression of 12 hub genes were extracted based on TCGA. To determine the diagnostic values of the hub genes, the receiver operating characteristic (ROC) curve and the area under the curve (AUC) were extracted based on GSE22891 and GSE122498. Finally, we evaluated the expression level of the genes in tissue of 83 GBM patients and also non-tumoral adjacent (as control) tissues.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Redes Reguladoras de Genes , Glioblastoma/genética , Transcriptoma , Neoplasias Encefálicas/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Glioblastoma/patologia , Humanos , Prognóstico , Mapas de Interação de Proteínas , Curva ROC
7.
Pathol Res Pract ; 227: 153639, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649055

RESUMO

Circular RNAs (circRNAs) as a new class of non-coding RNAs (ncRNAs) play role in gene regulation in multicellular organisms via various interactions with nucleic acids, proteins and particularly microRNAs. They have been found to be involved in a number of biological functions particularly in regulation of cell cycle, and extracellular interactions. Thus, dysregulation of circRNAs is found to be associated with several human diseases and especially numerous types of cancers. ciRS-7 is an example of circRNAs which have been studied in a number of human diseases like neurological diseases, diabetes mellitus, and importantly different malignancies. It has been found to regulate cell proliferation and malignant features in cancer cells. CiRS-7 is upregulated in several cancers and its overexpression promoted malignant phenotype of cancer cells via enhancing cell proliferation, migration, and invasion in vitro and in vivo. As a competing endogenous RNA (ceRNA), ciRS-7 is found to sponge miR-7 as the most common miRNA target in interaction together. Functional analyses show role of ciRS-7 in downregulation of miR-7 and involvement of a series of signaling pathways in turn through them it is believed that ciRS-7 regulates malignant behaviors of cancer cells. Clinical studies demonstrate upregulation of ciRS-7 in cancer tissues compared to their non-cancerous adjacent tissues, correlation with worse clinicopathological features in cancerous patients and an independent prognostic factor. In this review, we have an overview to the role of ciRS-7 in development and progression of cancer and also assess its potentials as a diagnostic and prognostic biomarker in human cancers.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Animais , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Detecção Precoce de Câncer , Terapia Genética , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Valor Preditivo dos Testes , Prognóstico , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo
8.
Cancer Chemother Pharmacol ; 88(5): 771-793, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510251

RESUMO

Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity. DOX is classified as a Topoisomerase II poison, which is cytotoxic to rapidly dividing tumor cells. Molecular mechanisms responsible for DOX resistance include effective DNA repair and resumption of cell proliferation, deregulated development of cancer stem cell and epithelial to mesenchymal transition, and modulation of programmed cell death. MicroRNAs (miRNAs) have been shown to potentiate the reversal of DOX resistance as they have gene-specific regulatory functions in DOX-responsive molecular pathways. Identifying the dysregulation patterns of miRNAs for specific tumors following treatment with DOX facilitates the development of novel combination therapies, such as nanoparticles harboring miRNA or miRNA inhibitors to eventually prevent DOX-induced chemoresistance. In this article, we summarize recent findings on the role of miRNAs underlying DOX sensitivity/resistance molecular pathways. Also, we provide latest strategies for utilizing deregulated miRNA patterns as biomarkers or miRNAs as tools to overcome chemoresistance and enhance patient's response to DOX treatment.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/terapia
9.
BMC Med Genomics ; 14(1): 180, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233668

RESUMO

BACKGROUND: Breast cancer (BC) is the most invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered critical nutrition that many cancer cells, particularly BC cells, are dependent on it for growth and proliferation. Therefore, targeting glutamine metabolism, especially enzymes that are related to this pathway, can be beneficial to design anti-cancer agents. Recent evidence has shown that microRNAs (miRNAs), with a short length and single-strand properties, play a prominent role in regulating the genes related to glutamine metabolism, which may control the development of cancer. METHODS: In silico analysis confirmed that miR-513c and miR-3163 might be involved in glutamine metabolism. The expression level of these two miRNAs was evaluated in eighty BC tissues and normal adjacent tissues. Furthermore, GSE38167, GSE38867, GSE42128, GSE45666, and GSE53179 were employed from gene expression omnibus (GEO). The Limma package was utilized to identify differentially expressed miRNAs (DEMs) of mentioned datasets to evaluate miR-513c and miR-3163 expression. Further, in silico analysis was utilized to predict the potential biological processes and molecular pathways of miR-513c and miR-3163, based on their target genes. RESULTS: In silico studies revealed top categories of biological processes and cellular pathways that might play a critical role in metabolism reprogramming and cancer development and were target genes for miR-513c and miR-3163. The current study showed that miR-513c (p value = 0.02062 and FC = - 2.3801) and miR-3163 (p value = 0.02034 and FC = - 2.3792) were downregulated in tumor tissues compared to normal adjacent tissues. The analysis of GEO microarray datasets showed that miR-513c was downregulated in GSE38167, GSE38867, GSE42128, GSE45666 and GSE53179, whereas there was a significant downregulation of miR-3163 in only two studies, including GSE38867 and GSE42128 that they were in accordance with our experimental results. Furthermore, the subgroup analysis did not show any substantial relationship between expression levels of these two miRNAs and factors such as age, family history of cancer, and abortion history. CONCLUSION: MiR-513c and miR-3163 were downregulated in BC tissues, which might serve as tumor suppressors. They are suggested as potential therapeutic targets for patients with BC.


Assuntos
Neoplasias da Mama
10.
Genes Dis ; 8(2): 146-156, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997161

RESUMO

Duchenne muscular dystrophy is an X-linked recessive hereditary monogenic disorder caused by inability to produce dystrophin protein. In most patients, the expression of dystrophin lost due to disrupting mutations in open reading frame. Despite the efforts in a large number of different therapeutic approaches to date, the treatments available for DMD remain mitigative and supportive to improve the symptoms of the disease, rather than to be curative. The advent of CRISPR/Cas9 technology has revolutionized genome editing scope and considered as pioneer in effective genomic engineering. Deletions or excisions of intragenic DNA by CRISPR as well as a similar strategy with exon skipping at the DNA level induced by antisense oligonucleotides, are new and promising approaches in correcting DMD gene, which restore the expression of a truncated but functional dystrophin protein. Also, CRISPR/Cas9 technology can be used to treat DMD by removing duplicated exons, precise correction of causative mutation by HDR-based pathway and inducing the expression of compensatory proteins such as utrophin. In this study, we briefly explained the molecular genetics of DMD and a historical overview of DMD gene therapy. We in particular focused on CRISPR/Cas9-mediated therapeutic approaches that used to treat DMD.

11.
Comput Biol Chem ; 92: 107458, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33761401

RESUMO

Glioblastoma Multiforme (GBM) is the most common, invasive, and malignant primary brain tumor with a poor prognosis and a median survival of 12-15 months. This study tried to identify the most significant miRNA biomarkers in both tissue and serum samples of GBM. GSE25632 was employed from gene expression omnibus and using WGCNA package, association of miRNA networks and clinical data was explored and brown and green modules identified as the most relevant modules. Independently, Limma package was utilized to identify differentially expressed miRNAs (DEMs) in GSE25632 by cutoff logFC > 2 and P.value < 0.05. By merging the results of Limma and WGCNA, the miRNAs that were in brown and green modules and had mentioned cutoff were selected as hub miRNAs. Performing enrichment analysis, Pathways in cancer, Prostate cancer, Glioma, p53 signaling pathway, and Focal adhesion were identified as the most important signaling pathways. Based on miRNA- target genes, has-mir-330-3p and has-mir-485-5p were identified as core miRNAs. The expression level of core miRNAs was validated by GSE90604, GSE42657, and GSE93850. We evaluated the expression level of common target genes of two detected core genes based on GSE77043, GSE42656, GSE22891, GSE15824, and GSE122498. The ability of detected miRNAs to discriminate GBM from healthy controls was assessed by area under the curve (AUC) using the ROC curve analysis. Based on TCGA database, we tested the prognostic significance of miRNAs using overall survival analysis. We evaluated the expression level of the miRNAs in tissue of 83 GBM patients and also non-tumoral adjacent (as control) tissues. We used serum samples of 34 GBM patients to evaluate the expression levels of the hub miRNAs compare to the controls. Our results showed that has-mir-330-3p and has-mir-485-5p could be potential biomarkers in GBM.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Biologia Computacional , Glioblastoma/genética , MicroRNAs/genética , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Glioblastoma/sangue , Humanos , MicroRNAs/sangue , Curva ROC
12.
Immunobiology ; 225(4): 151980, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32747025

RESUMO

Kawasaki disease (KD) has been declared a rare idiopathic condition for a long time. The children age less than five years, as the most susceptible group, are at risk of this disease. Since the cause of the disease is unknown, this study was designed to investigate the cause of KD. We applied metaDE and WGCNA packages in order to perform a meta-analysis and identify network modules of co-expressed genes, respectively, on three expression array datasets and also CEMiTool package to confirm detected modules by WGCNA. Using the Pearson correlation coefficient, the resemblance of KD to other symptomatic-similar diseases, including bacterial infections, viral infections, JIA (juvenile idiopathic arthritis), HSP (Henoch-Schönlein purpura), GAS (group A streptococcal), and HAdV (adenovirus) was accurately estimated. In addition to validation by more three expression array datasets, serum samples of 16 patients and eight control participants have undergone the Real-Time PCR assay so as to evaluate produced bioinformatic results. WGCNA showed 3840 differentially expressed genes (DEGs) in KD in comparison with other diseases accompanying resembling clinical manifestations. Through further bioinformatic analysis and validation, 42 out of DEGs were introduced as hub genes, which the results of Real-Time PCR assay subsequently attested to the majority of them. The DEGs possessed a remarkable commonality with those of bacterial conditions. According to our exhaustive results, the origin of KD has been revealed pertinent to bacterial infections. Another interesting finding in this study is introducing IVIG in combination with particular antibiotics as a novel therapeutic approach, which supported by a score of authentic research studies to overcome KD.


Assuntos
Infecções Bacterianas/complicações , Infecções Bacterianas/genética , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Síndrome de Linfonodos Mucocutâneos/etiologia , Criança , Biologia Computacional/métodos , Diagnóstico Diferencial , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Reprodutibilidade dos Testes , Transcriptoma
13.
Hum Immunol ; 79(12): 876-882, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30261221

RESUMO

Clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease9 (CRISPR/Cas9) technology, an acquired immune system in bacteria and archaea, has provided a new tool for accurately genome editing. Using only a single nuclease protein in complex with 2 short RNA as a site-specific endonuclease made it a simple and flexible genome editing tool to target nearly any genomic locus. Due to recent developments in therapeutic engineered T cell and effective responses of CD19-directed chimeric antigen receptor T cells (CART19) in patients with B-cell leukemia and lymphoma, adoptive T cell immunotherapy, particularly CAR-T cell therapy became a rapidly growing field in cancer therapy and recently Kymriah and Yescarta (CD19-directed CAR-T cells) were approved by FDA. Therefore, the combination of CRISPR/Cas9 technology as a genome engineering tool and CAR-T cell therapy (engineered T cells that express chimeric antigen receptors) may lead to further improvement in efficiency and safety of CAR-T cells. This article reviews mechanism and therapeutic application of CRISPR/Cas9 technology, accuracy of this technology, cancer immunotherapy by CAR T cells, the application of CRISPR technology for the production of universal CAR T cells, improving their antitumor efficacy, and biotech companies that invested in CRISPR technology for CAR-T cell therapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Humanos , Neoplasias/genética , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Reprodutibilidade dos Testes , Linfócitos T/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA