Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390853

RESUMO

In the search for new antibiotics to combat multidrug-resistant microbes, insects offer a rich source of novel anti-infectives, including a remarkably diverse array of antimicrobial peptides (AMPs) with broad activity against a wide range of species. Larvae of the common green bottle fly Lucilia sericata are used for maggot debridement therapy, and their effectiveness in part reflects the large panel of AMPs they secrete into the wound. To investigate the activity of these peptides in more detail, we selected two structurally different proline rich peptides (Lser-PRP2 and Lser-PRP3) in addition to the α-helical peptide Lser-stomoxyn. We investigated the mechanism of anti-Escherichia coli action of the PRPs in vitro and found that neither of them interfered with protein synthesis but both were able to bind the bacterial chaperone DnaK and are therefore likely to inhibit protein folding. However, unlike Lser-stomoxyn that permeabilized the bacterial membrane by 1% at the low concentration (0.25 µM) neither of the PRPs alone was able to permeabilize E. coli membrane. In the presence of this Lser-stomoxyn concentration significant increase in anti-E. coli activity of Lser-PRP2 was observed, indicating that this peptide needs specific membrane permeabilizing agents to exert its antibacterial activity. We then examined the AMPs-treated bacterial surface and observed detrimental structural changes in the bacterial cell envelope in response to combined AMPs. The functional analysis of insect AMPs will help select optimal combinations for targeted antimicrobial therapy.

2.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414796

RESUMO

Bce-like systems mediate resistance against antimicrobial peptides in Firmicutes bacteria. Lactobacillus casei BL23 encodes an "orphan" ABC transporter that, based on homology to BceAB-like systems, was proposed to contribute to antimicrobial peptide resistance. A mutant lacking the permease subunit was tested for sensitivity against a collection of peptides derived from bacteria, fungi, insects, and humans. Our results show that the transporter specifically conferred resistance against insect-derived cysteine-stabilized αß defensins, and it was therefore renamed DerAB for defensin resistance ABC transporter. Surprisingly, cells lacking DerAB showed a marked increase in resistance against the lantibiotic nisin. This could be explained by significantly increased expression of the antimicrobial peptide resistance determinants regulated by the Bce-like systems PsdRSAB (formerly module 09) and ApsRSAB (formerly module 12). Bacterial two-hybrid studies in Escherichia coli showed that DerB could interact with proteins of the sensory complex in the Psd resistance system. We therefore propose that interaction of DerAB with this complex in the cell creates signaling interference and reduces the cell's potential to mount an effective nisin resistance response. In the absence of DerB, this negative interference is relieved, leading to the observed hyperactivation of the Psd module and thus increased resistance to nisin. Our results unravel the function of a previously uncharacterized Bce-like orphan resistance transporter with pleiotropic biological effects on the cell.IMPORTANCE Antimicrobial peptides (AMPs) play an important role in suppressing the growth of microorganisms. They can be produced by bacteria themselves-to inhibit competitors-but are also widely distributed in higher eukaryotes, including insects and mammals, where they form an important component of innate immunity. In low-GC-content Gram-positive bacteria, BceAB-like transporters play a crucial role in AMP resistance but have so far been primarily associated with interbacterial competition. Here, we show that the orphan transporter DerAB from the lactic acid bacterium Lactobacillus casei is crucial for high-level resistance against insect-derived AMPs. It therefore represents an important mechanism for interkingdom defense. Furthermore, our results support a signaling interference from DerAB on the PsdRSAB module that might prevent the activation of a full nisin response. The Bce modules from L. casei BL23 illustrate a biological paradox in which the intrinsic nisin detoxification potential only arises in the absence of a defensin-specific ABC transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antibiose , Proteínas de Bactérias/genética , Defensinas/química , Proteínas de Insetos/química , Lacticaseibacillus casei/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lacticaseibacillus casei/metabolismo
3.
Parasitol Res ; 118(6): 1993-1998, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31001677

RESUMO

Antimicrobial peptides (AMPs) are important components of the vertebrate and invertebrate innate immune systems. Although AMPs are widely recognized for their broad-spectrum activity against bacteria, fungi, and viruses, their activity against protozoan parasites has not been investigated in detail. In this study, we tested 10 AMPs from three different insect species: the greater wax moth Galleria mellonella (cecropin A-D), the fruit fly Drosophila melanogaster (drosocin, Mtk-1 and Mtk-2), and the blow fly Lucilia sericata (LSerPRP-2, LSerPRP-3 and stomoxyn). We tested each AMP against the protozoan parasite Plasmodium falciparum which is responsible for the most severe form of malaria in humans. We also evaluated the impact of these insect AMPs on mouse and pig erythrocytes. Whereas all AMPs showed low hemolytic effects towards mouse and pig erythrocytes, only D. melanogaster Mtk-1 and Mtk-2 significantly inhibited the growth of P. falciparum at low concentrations. Mtk-1 and Mtk-2 could therefore be considered as leads for the development of antiparasitic drugs targeting the clinically important asexual blood stage of P. falciparum.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiparasitários/farmacologia , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Glicopeptídeos/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Camundongos , Mariposas/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Suínos
4.
Sci Rep ; 7(1): 8192, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811531

RESUMO

Insect-derived antifungal peptides have a significant economic potential, particularly for the engineering of pathogen-resistant crops. However, the nonspecific antifungal activity of such peptides could result in detrimental effects against beneficial fungi, whose interactions with plants promote growth or increase resistance against biotic and abiotic stress. The antifungal peptide metchnikowin (Mtk) from Drosophila melanogaster acts selectively against pathogenic Ascomycota, including Fusarium graminearum, without affecting Basidiomycota such as the beneficial symbiont Piriformospora indica. Here we investigated the mechanism responsible for the selective antifungal activity of Mtk by using the peptide to probe a yeast two-hybrid library of F. graminearum cDNAs. We found that Mtk specifically targets the iron-sulfur subunit (SdhB) of succinate-coenzyme Q reductase (SQR). A functional assay based on the succinate dehydrogenase (SDH) activity of mitochondrial complex II clearly demonstrated that Mtk inhibited the SDH activity of F. graminearum mitochondrial SQR by up to 52%, but that the equivalent enzyme in P. indica was unaffected. A phylogenetic analysis of the SdhB family revealed a significant divergence between the Ascomycota and Basidiomycota. SQR is one of the key targets of antifungal agents and we therefore propose Mtk as an environmentally sustainable and more selective alternative to chemical fungicides.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complexo II de Transporte de Elétrons/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Filogenia , Proteínas Recombinantes/farmacologia
5.
Toxins (Basel) ; 9(1)2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067810

RESUMO

The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25-30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/farmacologia , Bactérias/efeitos dos fármacos , Engenharia de Proteínas , Venenos de Escorpião/metabolismo , Escorpiões/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/toxicidade , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Cricetinae , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Filogenia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Venenos de Escorpião/genética , Escorpiões/genética , Sus scrofa
6.
Biol Chem ; 398(4): 491-498, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27811341

RESUMO

Antimicrobial peptides (AMPs) are essential components of the insect innate immune system. Their diversity provides protection against a broad spectrum of microbes and they have several distinct modes of action. Insect-derived AMPs are currently being developed for both medical and agricultural applications, and their expression in transgenic crops confers resistance against numerous plant pathogens. The antifungal peptide metchnikowin (Mtk), which was originally discovered in the fruit fly Drosophila melanogaster, is of particular interest because it has potent activity against economically important phytopathogenic fungi of the phylum Ascomycota, such as Fusarium graminearum, but it does not harm beneficial fungi such as the mycorrhizal basidiomycete Piriformospora indica. To investigate the specificity of Mtk, we used the peptide to screen a F. graminearum yeast two-hybrid library. This revealed that Mtk interacts with the fungal enzyme ß(1,3)-glucanosyltransferase Gel1 (FgBGT), which is one of the enzymes responsible for fungal cell wall synthesis. The interaction was independently confirmed in a second interaction screen using mammalian cells. FgBGT is required for the viability of filamentous fungi by maintaining cell wall integrity. Our study therefore paves the way for further applications of Mtk in formulation of bio fungicides or as a supplement in food preservation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Parede Celular/efeitos dos fármacos , Proteínas de Drosophila/farmacologia , Fusarium/efeitos dos fármacos , Glucana Endo-1,3-beta-D-Glucosidase/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Bioensaio , Linhagem Celular , Drosophila melanogaster/química , Fusarium/genética , Biblioteca Gênica , Modelos Biológicos , Filogenia
7.
Front Microbiol ; 7: 1682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822206

RESUMO

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

8.
Appl Microbiol Biotechnol ; 100(17): 7397-405, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27418360

RESUMO

Antimicrobial peptides/proteins (AMPs) are biologically active molecules with diverse structural properties that are produced by mammals, plants, insects, ticks, and microorganisms. They have a range of antibacterial, antifungal, antiviral, and even anticancer activities, and their biological properties could therefore be exploited for therapeutic and prophylactic applications. Cancer and cancer drug resistance are significant current health challenges, so the development of innovative cancer drugs with minimal toxicity toward normal cells and novel modes of action that can evade resistance may provide a new direction for anticancer therapy. The skin is the first line of defense against heat, sunlight, injury, and infection, and skin cancer is thus the most common type of cancer. The skin that has been exposed to sunlight is particularly susceptible, but lesions can occur anywhere on the body. Skin cancer awareness and self-efficacy are necessary to improve sun protection behavior, but more effective preventative approaches are also required. AMPs may offer a new prophylactic approach against skin cancer. In this mini review, we draw attention to the potential use of insect AMPs for the prevention and treatment of skin cancer.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antineoplásicos/uso terapêutico , Proteínas de Insetos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/prevenção & controle , Animais , Antibacterianos/uso terapêutico , Humanos , Insetos/metabolismo
9.
Biol Chem ; 397(9): 939-45, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27105487

RESUMO

Antimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G. mellonella secretes a repertoire of distinct AMPs following an immune challenge, we selected three different AMPs: cecropin A (CecA), gallerimycin and cobatoxin. We found that cobatoxin was active against Micrococcus luteus at a minimum inhibitory concentration (MIC) of 120 µm, but at 60 µm when co-presented with 4 µm CecA. In contrast, the MIC of gallerimycin presented alone was 60 µm and the co-presentation of CecA did not affect this value. Cobatoxin and gallerimycin were both inactive against Escherichia coli at physiological concentrations, however gallerimycin could potentiate the sublethal dose of CecA (0.25 µm) at a concentration of 30 µm resulting in 100% lethality. The ability of gallerimycin to potentiate the CecA was investigated by flow cytometry, revealing that 30 µm gallerimycin sensitized E. coli cells by inducing membrane depolarization, which intensified the otherwise negligible effects of 0.25 µm CecA. We therefore conclude that G. mellonella maximizes the potential of its innate immune response by the co-presentation of different AMPs that become more effective at lower concentrations when presented simultaneously.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Imunidade Inata , Lepidópteros/imunologia , Lepidópteros/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Modelos Moleculares , Estrutura Secundária de Proteína
10.
Dev Comp Immunol ; 61: 258-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26976231

RESUMO

Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 µM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta.


Assuntos
Antifúngicos/metabolismo , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Insetos/metabolismo , Manduca/imunologia , Micrococcus luteus/imunologia , Peptídeos/metabolismo , Saccharomyces cerevisiae/imunologia , Animais , Antígenos de Fungos/imunologia , Clonagem Molecular , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Larva , Espectrometria de Massas , Peptídeos/genética
11.
Peptides ; 78: 17-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26845197

RESUMO

Long-chain proline-rich antimicrobial peptides such as bumblebee abaecin show minimal activity against Gram-negative bacteria despite binding efficiently to specific intracellular targets. We recently reported that bumblebee abaecin interacts with Escherichia coli DnaK but shows negligible antibacterial activity unless it is combined with sublethal doses of the pore-forming peptide hymenoptaecin. These two bumblebee peptides are co-expressed in vivo in response to a bacterial challenge. Here we investigated whether abaecin interacts similarly with pore-forming peptides from other organisms by replacing hymenoptaecin with sublethal concentrations of cecropin A (0.3 µM) or stomoxyn (0.05 µM). We found that abaecin increased the membrane permeabilization effects of both peptides, confirming that it can reduce the minimal inhibitory concentrations of pore-forming peptides from other species. We also used atomic force microscopy to show that 20 µM abaecin combined with sublethal concentrations of cecropin A or stomoxyn causes profound structural changes to the bacterial cell surface. Our data indicate that the potentiating functional interaction between abaecin and pore-forming peptides is not restricted to specific co-expressed peptides from the same species but is likely to be a general mechanism. Combination therapies based on diverse insect-derived peptides could therefore be used to tackle bacteria that are recalcitrant to current antibiotics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Abelhas/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Ensaios Enzimáticos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Insetos/isolamento & purificação , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Muscidae/química , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/metabolismo
12.
Mol Plant Pathol ; 17(3): 464-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26220619

RESUMO

Plants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling. Such links among AMPs and defence signalling pathways are poorly understood and there is no clear model for their interactions. This article provides a critical review of the empirical data to shed light on the wider role of AMPs in the robust and resource-effective defence responses of plants.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Imunidade Vegetal , Plantas/imunologia , Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Appl Microbiol Biotechnol ; 99(21): 8847-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26307444

RESUMO

Antimicrobial peptides (AMPs) are components of the innate immune system in many species of animals. Their diverse spectrum of activity against microbial pathogens, both as innate defense molecules and immunomodulators, makes them attractive candidates for the development of a new generation of antibiotics. Although the potential immunogenicity of AMPs means they are not suitable for injection and their susceptibility to digestive peptidases is likely to reduce their oral efficacy, they are ideal for topical formulations such as lotions, creams, shampoos, and wound dressings and could therefore be valuable products for the cosmetic industry. In this context, short AMPs (<20 amino acids) lacking disulfide bonds combine optimal antimicrobial activity with inexpensive chemical synthesis and are therefore more compatible with large-scale production and the modifications required to ensure stability, low toxicity, and microbial specificity. Proof-of-concept for the application of AMPs as novel anti-infectives has already been provided in clinical trials. This perspective considers the anti-infective properties of short AMPs lacking disulfide bonds, which are active against dermatologically important microflora. We consider the challenges that need to be addressed to facilitate the prophylactic application of AMPs in personal care products.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Cosméticos/efeitos adversos , Cosméticos/química , Dermatopatias/prevenção & controle , Ensaios Clínicos como Assunto
14.
Dev Comp Immunol ; 53(2): 358-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26255244

RESUMO

Antimicrobial peptides are ubiquitous components of eukaryotic innate immunity. Defensins are a well-known family of antimicrobial peptides, widely distributed in ticks, insects, plants and mammals, showing activity against bacteria, viruses, fungi, yeast and protozoan parasites. Ixodes ricinus is the most common tick species in Europe and is a vector of pathogens affecting human and animal health. Recently, six defensins (including two isoforms) were identified in I. ricinus. We investigated the evolution of the antimicrobial activity of I. ricinus defensins. Among the five unique defensins, only DefMT3, DefMT5 and DefMT6 showed in vitro antimicrobial activity. Each defensin was active against rather distantly-related bacteria (P < 0.05), significantly among Gram-negative species (P < 0.0001). These three defensins represent different clades within the family of tick defensins, suggesting that the last common ancestor of tick defensins may have had comparable antimicrobial activity. Differences in electrostatic potential, and amino acid substitutions in the ß-hairpin and the loop bridging the α-helix and ß-sheet may affect the antimicrobial activity in DefMT2 and DefMT7, which needs to be addressed. Additionally, the antimicrobial activity of the γ-core motif of selected defensins (DefMT3, DefMT6, and DefMT7) was also tested. Interestingly, compared to full length peptides, the γ-core motifs of these defensins were effective against less species of bacteria. However, the antifungal activity of the γ-core was higher than full peptides. Our results broaden the scope of research in the field of antimicrobial peptides highlighting the overlooked ability of arthropod defensins to act against distantly-related microorganisms.


Assuntos
Infecções Bacterianas/imunologia , Defensinas/metabolismo , Proteínas de Insetos/metabolismo , Ixodes , Micoses/imunologia , Motivos de Aminoácidos , Animais , Evolução Biológica , Células Cultivadas , Defensinas/genética , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteínas de Insetos/genética , Especificidade da Espécie
15.
Proc Biol Sci ; 282(1806): 20150293, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833860

RESUMO

Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 µM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 µM. In combination, as little as 1.25 µM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Abelhas/imunologia , Abelhas/microbiologia , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Insetos/metabolismo , Alinhamento de Sequência , Especificidade da Espécie
16.
Parasit Vectors ; 7: 554, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25443032

RESUMO

BACKGROUND: Ixodes scapularis is the most common tick species in North America and a vector of important pathogens that cause diseases in humans and animals including Lyme disease, anaplasmosis and babesiosis. Tick defensins have been identified as a new source of antimicrobial agents with putative medical applications due to their wide-ranging antimicrobial activities. Two multigene families of defensins were previously reported in I. scapularis. The objective of the present study was to characterise the potential antimicrobial activity of two defensins from I. scapularis with emphasis on human pathogenic bacterial strains and important phytopathogenic fungi. METHODS: Scapularisin-3 and Scapularisin-6 mature peptides were chemically synthesised. In vitro antimicrobial assays were performed to test the activity of these two defensins against species of different bacterial genera including Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, and Listeria spp. as well as Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa along with two plant-pathogenic fungi from the genus Fusarium. In addition, the tissue-specific expression patterns of Scapularisin-3 and Scapularisin-6 in I. scapularis midgut, salivary glands and embryo-derived cell lines were determined using PCR. Finally, tertiary structures of the two defensins were predicted and structural analyses were conducted. RESULTS: Scapularisin-6 efficiently killed L. grayi, and both Scapularisin-3 and Scapularisin-6 caused strong inhibition (IC50 value: ~1 µM) of the germination of plant-pathogenic fungi Fusarium culmorum and Fusarium graminearum. Scapularisin-6 gene expression was observed in I. scapularis salivary glands and midgut. However, Scapularisin-3 gene expression was only detected in the salivary glands. Transcripts from the two defensins were not found in the I. scapularis tick cell lines ISE6 and ISE18. CONCLUSION: Our results have two main implications. Firstly, the anti-Listeria and antifungal activities of Scapularisin-3 and Scapularisin-6 suggest that these peptides may be useful for (i) treatment of antibiotic-resistant L. grayi in humans and (ii) plant protection. Secondly, the antimicrobial properties of the two defensins described in this study may pave the way for further studies regarding pathogen invasion and innate immunity in I. scapularis.


Assuntos
Anti-Infecciosos/farmacologia , Defensinas/farmacologia , Fusarium/efeitos dos fármacos , Ixodes/química , Listeria/efeitos dos fármacos , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Defensinas/síntese química , Defensinas/química , Defensinas/isolamento & purificação , Cobaias , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Staphylococcus epidermidis
17.
Biosci Rep ; 34(3)2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24865400

RESUMO

Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT-PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress.


Assuntos
Aciltransferases/biossíntese , Carthamus tinctorius/enzimologia , Pressão Osmótica/fisiologia , Fenilalanina Amônia-Liase/biossíntese , Proteínas de Plantas/biossíntese , Ácido Salicílico/metabolismo , Estresse Fisiológico/fisiologia , Flavonoides/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia
18.
Plant Signal Behav ; 8(11): e27335, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24309561

RESUMO

Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3-6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6-24 h and 3-6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.


Assuntos
Carthamus tinctorius/enzimologia , Carthamus tinctorius/fisiologia , Transferases Intramoleculares/metabolismo , Ácido Salicílico/farmacologia , Salinidade , Estresse Fisiológico/efeitos dos fármacos , Transcinamato 4-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/efeitos dos fármacos , Carthamus tinctorius/efeitos dos fármacos , Carthamus tinctorius/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transferases Intramoleculares/química , Transferases Intramoleculares/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Estresse Fisiológico/genética , Transcinamato 4-Mono-Oxigenase/química , Transcinamato 4-Mono-Oxigenase/isolamento & purificação
19.
J Plant Res ; 125(1): 115-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21516363

RESUMO

Transgenesis of antimicrobial peptides (AMPs) from different origins has emerged as an option for improvement of crop disease resistance since proof-of-concept for their activities against microbial phytopathogens is provided, persistently. Nevertheless, a more systematic approach based on knowledge of AMPs modes of action including elucidation of their cellular targets and possible impact on immune system considerably improves and diversifies the armory against harmful plant diseases. In present study, the impact of Metchnikowin (Mtk) expression in barley in terms of modulating different immune pathways was investigated. Monitoring of transcript abundance of different genes involved in key immune pathways of SAR, ISR, and redox milieu during interaction of Mtk barley with biotrophic Blumeria graminis f. sp. hordei (Bgh) demonstrated that several immune responses are modulated in Mtk transgenic plants. Present findings substantiate the higher activation of SAR pathway as well as ISR pathway in transgenic plants. Regarding susceptibility factors, nonetheless MLO gene is expressed more in Mtk plants and should lead to an increased cellular accessibility to Bgh, its impact is presumably overwhelmed by other mechanism(s) so that the plants show more resistance when challenging with Bgh. On the other hand, no obvious difference was observed between expression level of Bax inhibitor-1 (BI-1) in transgenic and wild type plants, which could be an indicative of its neutrality in resistance/susceptibility of transgenic plants to Bgh. The provided evidence on the involved pathways in Mtk-induced resistance improves our knowledge concerning impacts of AMPs expressed in diverse plant species on immune system of relevant transgenic plants.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Ascomicetos/fisiologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/imunologia , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Animais , Antifúngicos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Ciclopentanos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Hordeum/microbiologia , Oxirredução , Oxilipinas/metabolismo , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Frações Subcelulares/metabolismo , Fatores de Tempo
20.
Plant Signal Behav ; 6(9): 1325-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21847025

RESUMO

Complicated schemes of classical breeding and their drawbacks, environmental risks imposed by agrochemicals, decrease of arable land, and coincident escalating damages of pests and pathogens have accentuated the necessity for highly efficient measures to improve crop protection. During co-evolution of host-microbe interactions, antimicrobial peptides (AMPs) have exhibited a brilliant history in protecting host organisms against devastation by invading pathogens. Since the 1980s, a plethora of AMPs has been isolated from and characterized in different organisms. Nevertheless the AMPs expressed in plants render them more resistant to diverse pathogens, a more orchestrated approach based on knowledge of their mechanisms of action and cellular targets, structural toxic principle, and possible impact on immune system of corresponding transgenic plants will considerably improve crop protection strategies against harmful plant diseases. This review outlines the current knowledge on different modes of action of AMPs and then argues the waves of AMPs' ectopic expression on transgenic plants' immune system.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Plantas/microbiologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Plantas/genética , Plantas/imunologia , Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA