Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genome Ed ; 5: 1272678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144710

RESUMO

Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.

2.
Plants (Basel) ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145810

RESUMO

Plant flowering is antagonistically modulated by similar FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) proteins. In mango (Mangifera indica L.), flowering is induced by cold temperatures, unless the tree is juvenile or the adult tree had a high fruit load (HFL) in the summer. Here, we studied the effects of juvenility and fruit load on the expression of four MiFT/TFL1 genes cloned from the mango 'Shelly' cultivar. Ectopic expression of MiFT1 in Arabidopsis resulted in early flowering, whereas over-expression of MiFT2 and the two cloned MiTFL1 genes repressed flowering. Moreover, juvenility was positively correlated with higher transcript levels of MiFT2 and both MiTFL1s. In trees with a low fruit load, leaf MiFT1 expression increased in winter, whereas HFL delayed its upregulation. MiFT2 expression was upregulated in both leaves and buds under both fruit load conditions. Downregulation of both MITFL1s in buds was associated with a decrease in regional temperatures under both conditions; nevertheless, HFL delayed the decrease in their accumulation. Our results suggest that cold temperature has opposite effects on the expression of MiFT1 and the MiTFL1s, thereby inducing flowering, whereas HFL represses flowering by both suppressing MiFT1 upregulation and delaying MiTFL1s downregulation. The apparent flowering-inhibitory functions of MiFT2 are discussed.

3.
Antioxidants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943093

RESUMO

Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to "thwart" disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.

4.
Physiol Mol Biol Plants ; 27(3): 535-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33854282

RESUMO

In salt-prone areas, plant growth and productivity is adversely affected. In the present study, the ZT1-ZT6 transgenic tomato lines having BcZAT12 gene under the regulatory control of the stress inducible Bclea1 promoter were exposed to three salinity levels (50, 100 and 200 mM) at the four leaf stage for 10 days. The transgenic lines showed improved growth in stem height, leaf area, root length and shoot length under saline conditions, as compared to control. Moreover, ZT1 and ZT5 lines showed lower electrolyte leakage and decreased hydrogen peroxide formation, in combination with elevated relative water content, proline and chlorophyll levels. The enzyme activity of catalase was also enhanced in ZT1 and ZT5. These results poses the present lines as an attractive alternative for tomato cultivation in salinity-affected areas.

5.
Genes (Basel) ; 12(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808710

RESUMO

In mango (Mangifera indica L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis. IDA-like peptides may assume similar roles in fruit trees. In this study, we isolated two mango IDA-like encoding-genes, MiIDA1 and MiIDA2. We used mango fruitlet-bearing explants and fruitlet-bearing trees, in which fruitlets abscission was induced using ethephon. We monitored the expression profiles of the two MiIDA-like genes in control and treated fruitlet abscission zones (AZs). In both systems, qRT-PCR showed that, within 24 h, both MiIDA-like genes were induced by ethephon, and that changes in their expression profiles were associated with upregulation of different ethylene signaling-related and cell-wall modifying genes. Furthermore, ectopic expression of both genes in Arabidopsis promoted floral-organ abscission, and was accompanied by an early increase in the cytosolic pH of floral AZ cells-a phenomenon known to be linked with abscission, and by activation of cell separation in vestigial AZs. Finally, overexpression of both genes in an Atida mutant restored its abscission ability. Our results suggest roles for MiIDA1 and MiIDA2 in affecting mango fruitlet abscission. Based on our results, we propose new possible modes of action for IDA-like proteins in regulating organ abscission.


Assuntos
Perfilação da Expressão Gênica/métodos , Mangifera/fisiologia , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/genética , Arabidopsis/fisiologia , Citosol , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mangifera/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Análise de Sequência de RNA , Regulação para Cima
6.
Biometals ; 27(6): 1231-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25187181

RESUMO

ZAT12 a C2H2-zinc-finger protein is an abiotic stress-responsive transcription factor in plants having less information about their structure. Transcription analysis proved that ZAT12 transcripts over-expressed during drought, heat and salt stress conditions which led to an interest in 3-D structural studies of ZAT12in Brassica carinata. Over-expression of BcZAT12 in transformed tomato plants under abiotic stresses, suggest role of ZAT12 in conferring stress-tolerance in tomato. Sequence analysis of ZAT12 protein (Accession No. ABB55254.1) from B. carinata revealed it as a 161 amino acid long protein with short conserved motif (140)LDLXL(144) in C-terminal, a leucine rich L-Box with-(14)EXXAXCLXXL(23) motif in N-terminal region and presence of two conserved Zinc-Finger motifs "CXXCXXXXXXXQALGGHXXXH" between positions 42-62 and 85-105. The two zinc finger motifs have presence of two conserved glutamic acid (Glu) and phenylalanine (Phe) residues. Two methionine (Met) residues at position 94 and 102 present in ZF-motif-2 were absent in ZF-motif-1. The (94)Met and (97)Ala in ZF-motif-2 were found to be replaced by serine (Ser) in ZF-motif-1. Homology and ab initio structural modeling of ZAT12 encoded BcZAT12 protein of B. carinata resulted in robust 3-D models and were evaluated for structural motifs, associated GO terms and protein-DNA interactions. The BcZAT12 protein model, was of good quality, reliable, stable and is deposited in PMDB database (PMDB ID: PM0078213). BcZAT12 is annotated as an intracellular protein having molecular function in Zn-binding which in turn regulates signal transduction/translation processes in response to abiotic stresses in plants. Results suggest BcZAT12 protein to interact directly with one strand of dsDNA via electrostatic and H-bonds.


Assuntos
Brassica/genética , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Solanum lycopersicum/genética , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Salinidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transgenes , Dedos de Zinco/genética
7.
Phytochemistry ; 95: 109-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23962802

RESUMO

The transcription factor ZAT12 is a member of stress-responsive C2H2 type zinc finger protein (ZFP) reported to control the expression of stress-activated genes mediated via ROS in plants. BcZAT12-transformed tomato cv. H-86, var. Kashi vishesh (lines ZT1-ZT6) over-expressing the gene product is demonstrated herein to be tolerant to heat-shock (HS)-induced oxidative stress. Results reveal that the relative expression of ZAT12 as well as heat induced Hsp17.4 and Hsp21 gene transcripts increased in transgenic upon exposure to HS. The transformed tomato lines ZT1 and ZT5 had significantly lowered free radical formation, improved electrolyte leakage, relative water content and chlorophyll levels with an enhanced activities of antioxidant enzymes viz. superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase when exposed to HS. HS-induced oxidative stress by over-expression of the BcZAT12 gene transcripts in tomato as well as by largely enhancing the ROS-scavenging capacity and up regulation of Hsp transcripts. This enables the transgenic tomato plants to acquire a greater ability to counteract HS-induced oxidative stress, being endowed with more reduced antioxidant pools. The use of these HS-tolerant tomato lines could possibly be used for tomato cultivation in the areas affected by sudden temperature changes.


Assuntos
Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Secas , Temperatura Alta , Estresse Oxidativo/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Clorofila/metabolismo , Eletrólitos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Transformação Genética , Regulação para Cima , Água/metabolismo
8.
Phytochemistry ; 85: 44-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23079765

RESUMO

Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C2H2 zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T0 tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T2 generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H2O2 level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress.


Assuntos
Secas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA