Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(3): e0110821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878310

RESUMO

Equitable and timely access to COVID-19-related care has emerged as a major challenge, especially in developing and low-income countries. In India, ∼65% of the population lives in villages where infrastructural constraints limit the access to molecular diagnostics of COVID-19 infection. Especially, the requirement of a cold chain transport for sustained sample integrity and associated biosafety challenges pose major bottlenecks to the equitable access. Here, we developed an innovative clinical specimen collection medium, named SupraSens microbial transport medium (SSTM). SSTM allowed a cold chain-independent transport at a wide temperature range (15°C to 40°C) and directly inactivated SARS-CoV-2 (<15 min). Evaluation of SSTM compared to commercial viral transport medium (VTM) in field studies (n = 181 patients) highlighted that, for the samples from same patients, SSTM could capture more symptomatic (∼26.67%, 4/15) and asymptomatic (52.63%, 10/19) COVID-19 patients. Compared to VTM, SSTM yielded significantly lower quantitative PCR (qPCR) threshold cycle (Ct) values (mean ΔCt > -3.50), thereby improving diagnostic sensitivity of SSTM (18.79% [34/181]) versus that of VTM (11.05% [20/181]). Overall, SSTM had detection of COVID-19 patients 70% higher than that of VTM. Since the logistical and infrastructural constraints are not unique to India, our study highlights the invaluable global utility of SSTM as a key to accurately identify those infected and control COVID-19 transmission. Taken together, our data provide a strong justification to the adoption of SSTM for sample collection and transport during the pandemic. IMPORTANCE Approximately forty-four percent of the global population lives in villages, including 59% in Africa (https://unhabitat.org/World%20Cities%20Report%202020). The fast-evolving nature of SARS-CoV-2 and its extremely contagious nature warrant early and accurate COVID-19 diagnostics across rural and urban population as a key to prevent viral transmission. Unfortunately, lack of adequate infrastructure, including the availability of biosafety-compliant facilities and an end-to-end cold chain availability for COVID-19 molecular diagnosis, limits the accessibility of testing in these countries. Here, we fulfill this urgent unmet need by developing a sample collection and transport medium, SSTM, that does not require cold chain, neutralizes the virus quickly, and maintains the sample integrity at broad temperature range without compromising sensitivity. Further, we observed that use of SSTM in field studies during pandemic improved the diagnostic sensitivity, thereby establishing the feasibility of molecular testing even in the infrastructural constraints of remote, hilly, or rural communities in India and elsewhere.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , COVID-19/virologia , Teste para COVID-19 , Contenção de Riscos Biológicos , Meios de Cultura/química , Meios de Cultura/metabolismo , Humanos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Manejo de Espécimes/instrumentação
2.
Blood Cells Mol Dis ; 82: 102421, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171843

RESUMO

Venous thrombo-embolism (VTE) is multi-factorial disease involving several genetic and acquired risk factors responsible for its onset. It may occur spontaneously upon climbing at High Altitude (HA). Several studies demonstrated that hypoxic conditions prevailing at HA pose an independent risk factor for VTE; however, molecular mechanism remains unknown. Present study aims to identify genes associated with HA-induced VTE pathophysiology using real time TaqMan Low-Density Array (TLDA) of known candidate genes. Gene expression of total 93 genes were studied and analyzed in patients of VTE from HA (HA-VTE) and from sea level (SL-VTE) in comparison to respective controls. Both HA-VTE and SL-VTE patients showed up-regulation of 37 genes involved in blood coagulation cascade, clot formation, platelet formation, endothelial response, angiogenesis, cell adhesion and calcium channel activity. Seven genes including ACE, EREG, C8A, DLG2, USF1, F2 and PCDHA7 were up-regulated in both HA-controls and VTE patients (both HA-VTE and SL-VTE) indicating their role during VTE event and also upon HA exposure. Ten genes; CDH18, FGA, EDNBR, GATA2, MAPK9, BCAR1, FRK, F11, PCDHA1 and ST8SIA4 were uniquely up-regulated in HA-VTE. The differentially expressed genes from the present study could be determining factors for HA-VTE susceptibility and provide insights into VTE occurrence at HA.


Assuntos
Doença da Altitude , Coagulação Sanguínea , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Tromboembolia Venosa , Adulto , Altitude , Doença da Altitude/sangue , Doença da Altitude/complicações , Doença da Altitude/patologia , Feminino , Humanos , Masculino , Tromboembolia Venosa/sangue , Tromboembolia Venosa/genética , Tromboembolia Venosa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA