Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614957

RESUMO

Metal ion-catalyzed overproduction of reactive oxygen species (ROS) is believed to contribute significantly to oxidative stress and be involved in several biological processes, from immune defense to development of diseases. Among the essential metal ions, copper is one of the most efficient catalysts in ROS production in the presence of O2 and a physiological reducing agent such as ascorbate. To control this chemistry, Cu ions are tightly coordinated to biomolecules. Free or loosely bound Cu ions are generally avoided to prevent their toxicity. In the present report, we aim to find stable Cu-ligand complexes (Cu-L) that can efficiently catalyze the production of ROS in the presence of ascorbate under aerobic conditions. Thermodynamic stability would be needed to avoid dissociation in the biological environment, and high ROS catalysis is of interest for applications as antimicrobial or anticancer agents. A series of Cu complexes with the well-known tripodal and tetradentate ligands containing a central amine linked to three pyridyl-alkyl arms of different lengths were investigated. Two of them with mixed arm length showed a higher catalytic activity in the oxidation of ascorbate and subsequent ROS production than Cu salts in buffer, which is an unprecedented result. Despite these high catalytic activities, no increased antimicrobial activity toward Escherichia coli or cytotoxicity against eukaryotic AGS cells in culture related to Cu-L-based ROS production could be observed. The potential reasons for discrepancy between in vitro and in cell data are discussed.


Assuntos
Cobre , Espécies Reativas de Oxigênio , Cobre/metabolismo , Cobre/química , Espécies Reativas de Oxigênio/metabolismo , Ligantes , Catálise , Humanos , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Ácido Ascórbico/metabolismo , Ácido Ascórbico/química , Oxirredução
2.
Front Mol Biosci ; 11: 1355963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645276

RESUMO

CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aß peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.

3.
J Nucl Med ; 64(7): 1062-1068, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142300

RESUMO

227Th is a promising radioisotope for targeted α-particle therapy. It produces 5 α-particles through its decay, with the clinically approved 223Ra as its first daughter. There is an ample supply of 227Th, allowing for clinical use; however, the chemical challenges of chelating this large tetravalent f-block cation are considerable. Using the CD20-targeting antibody ofatumumab, we evaluated chelation of 227Th4+ for α-particle-emitting and radiotheranostic applications. Methods: We compared 4 bifunctional chelators for thorium radiopharmaceutical preparation: S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2-(4-isothicyanatobenzyl)-1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid (p-SCN-Bn-HEHA), p-isothiacyanatophenyl-1-hydroxy-2-oxopiperidine-desferrioxamine (DFOcyclo*-p-Phe-NCS), and macrocyclic 1,2-HOPO N-hydroxysuccinimide (L804-NHS). Immunoconstructs were evaluated for yield, purity, and stability in vitro and in vivo. Tumor targeting of the lead 227Th-labeled compound in vivo was performed in CD20-expressing models and compared with a companion 89Zr-labeled PET agent. Results: 227Th-labeled ofatumumab-chelator constructs were synthesized to a radiochemical purity of more than 95%, excepting HEHA. 227Th-HEHA-ofatumumab showed moderate in vitro stability. 227Th-DFOcyclo*-ofatumumab presented excellent 227Th labeling efficiency; however, high liver and spleen uptake was revealed in vivo, indicative of aggregation. 227Th-DOTA-ofatumumab labeled poorly, yielding no more than 5%, with low specific activity (0.08 GBq/g) and modest long-term in vitro stability (<80%). 227Th-L804-ofatumumab coordinated 227Th rapidly and efficiently at high yields, purity, and specific activity (8 GBq/g) and demonstrated extended stability. In vivo tumor targeting confirmed the utility of this chelator, and the diagnostic analog, 89Zr-L804-ofatumumab, showed organ distribution matching that of 227Th to delineate SU-DHL-6 tumors. Conclusion: Commercially available and novel chelators for 227Th showed a range of performances. The L804 chelator can be used with potent radiotheranostic capabilities for 89Zr/227Th quantitative imaging and α-particle therapy.


Assuntos
Linfoma , Radioimunoterapia , Humanos , Radioimunoterapia/métodos , Medicina de Precisão , Radioisótopos/uso terapêutico , Radioisótopos/química , Quelantes/química , Compostos Radiofarmacêuticos/uso terapêutico , Linfoma/patologia , Linhagem Celular Tumoral , Zircônio/química
4.
Chem Sci ; 13(40): 11829-11840, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320914

RESUMO

Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aß). In vitro, Cu-Aß is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu-Aß is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aß and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aß1-16 peptide and consequently inhibited the Cu-Aß based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD.

5.
J Inorg Biochem ; 221: 111478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975250

RESUMO

The measurement of labile CuII in biological samples is fundamental for understanding Cu metabolism and has been emerging as a promising diagnostic marker for Cu-related pathologies such as Wilson's and Alzheimer's diseases. The use of fluorescent chelators may be useful to circumvent separation steps employed by current methods. For this purpose, we recently designed a selective and suited-affinity turn-off luminescent probe based on a peptide bearing the CuII-binding Xxx-Zzz-His (Amino-Terminal CuII- and NiII-binding, ATCUN) motif and a TbIII-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complex. Here, we present an analogue probe bearing the ATCUN motif variant Xxx-His-His. This probe showed much faster response in biologically-relevant media and higher stability than the previous motif at low pH. These features could be beneficial to the measurement of dynamic CuII fluctuations and the application in slightly acidic media, such as urine.


Assuntos
Quelantes/química , Cobre/análise , Proteínas Luminescentes/química , Peptídeos/química , Motivos de Aminoácidos , Cobre/química , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Luminescência , Medições Luminescentes
6.
Chem Commun (Camb) ; 56(81): 12194-12197, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32914794

RESUMO

Employing peptide-based models of copper transporter 1 (CTR1), we show that the trimeric arrangement of its N-terminus tunes its reactivity with Cu, promoting Cu(ii) reduction and stabilizing Cu(i). Hence, the employed multimeric models of CTR1 provide an important contribution to studies on early steps of Cu uptake by cells.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Sítios de Ligação , Cobre/química , Transportador de Cobre 1/química , Humanos , Modelos Moleculares , Estrutura Molecular , Oxirredução
7.
J Inorg Biochem ; 213: 111255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980641

RESUMO

Depending on the coordination, copper ions can have a very high activity in catalyzing the production of reactive oxygen species. Thus interest arose in increasing the activity of antimicrobial peptides (AMPs) by equipping them with a Cu-binding unit. Several examples, native and engineered, have been investigated with the motif Xxx-Zzz-His, called Amino Terminal Cu(II)- and Ni(II)-binding (ATCUN) motif. Here we investigate a short AMP that was equipped either with Xxx-Zzz-His or Xxx-His. Xxx-His is a shorter motif and yields a more redox active copper complex. The control AMP, Xxx-His-AMP and Xxx-Zzz-His-AMP were investigated toward Cu-binding, Reactive Oxygen Species (ROS) production and antimicrobial activity in E. coli. The data indicate that these Cu-binding motifs have very limited impact on antimicrobial activity and low ROS production capability.


Assuntos
Aminoácidos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sítios de Ligação , Cobre/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia
8.
J Inorg Biochem ; 213: 111257, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32987237

RESUMO

Combination of complexes of lanthanide cations (Ln3+) for their luminescent properties and peptides for their recognition properties is interesting in view of designing responsive luminescent probes. The octadentate DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelate is the most popular chelate to design Ln3+ complex-peptide conjugates. We describe a novel building block, DO3Apic-tris(allyl)ester, which provides access to peptides with a conjugated nonadentate chelate, namely DO3Apic, featuring a picolinate arm in place of one of the acetate arms compared to DOTA, for improved luminescence properties. This building block, with allyl protecting groups, is readily obtained by solid phase synthesis. We show that it is superior to its analogue with tBu protecting groups for the preparation of peptide conjugates because of the difficult removal of the tBu protecting groups for the latter. Then, we compare two luminescent zinc fingers (LZF) comprising (i) a zinc finger peptide for selective Zn2+ binding, (ii) a Eu3+ complex and (iii) an acridone antenna (ACD) for long-wavelength sensitization of Eu3+ luminescence. The first one, LZF3ACD|Eu, incorporates a DOTA chelate for Eu3+ whereas the other, LZF4ACD|Eu, incorporates a DO3Apic chelate. Both act as Zn2+-responsive luminescent probes but we show that changing DOTA for DO3Apic results in a higher Eu3+ luminescence lifetime and in a doubling of the quantum yield, confirming the interest of the DO3Apic chelate and the DO3Apic(tris(allyl)ester building block for the preparation of Ln3+ complex-peptide conjugates. Additionally, the DO3Apic chelate provides self-calibration for LZF4ACD|Eu luminescence upon excitation of its picolinamide chromophore, making LZF4ACD|Eu a ratiometric sensor for Zn2+.


Assuntos
Elementos da Série dos Lantanídeos/química , Luminescência , Peptídeos/química , Ácidos Picolínicos/química , Análise Espectral/métodos , Zinco/química
9.
Chemistry ; 26(59): 13476-13483, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608532

RESUMO

The interest in ratiometric luminescent probes that detect and quantify a specific analyte is growing. Owing to their special luminescence properties, lanthanide(III) cations offer attractive opportunities for the design of dual-color ratiometric probes. Here, the design principle of hetero-bis-lanthanide peptide conjugates by using native chemical ligation is described for perfect control of the localization of each lanthanide cation within the molecule. Two zinc-responsive probes, r-LZF1Tb|Cs124|Eu and r-LZF1Eu|Cs124|Tb are described on the basis of a zinc finger peptide and two DOTA (DOTA=1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid) complexes of terbium and europium. Both display dual-color ratiometric emission in response to the presence of Zn2+ . By using a screening approach, anthracene was identified for the sensitization of the luminescence of two near-infrared-emitting lanthanides, Yb3+ and Nd3+ . Thus, two novel zinc-responsive hetero-bis-lanthanide probes, r-LZF3Yb|Anthra|Nd and r-LZF3Nd|Anthra|Yb were assembled, the former offering a neat ratiometric response to Zn2+ with emission in the near-infrared around 1000 nm, which is unprecedented.


Assuntos
Elementos da Série dos Lantanídeos , Peptídeos/química , Európio/química , Luminescência , Térbio/química , Zinco/química
10.
Chem Commun (Camb) ; 56(35): 4797-4800, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32227051

RESUMO

The measurement of exchangeable Cu2+ levels in biological samples is gaining interest in the context of copper-related pathologies. Here, we report a Tb3+ luminescent turn-off sensor for Cu2+ based on the specific and suitable-affinity Xxx-Zzz-His (ATCUN) peptide motif, enabling Cu2+ detection in the presence of a biological fluorescent background.


Assuntos
Cobre/análise , Peptídeos/química , Térbio/química , Animais , Cobre/química , Luminescência , Albumina Sérica/química , Suínos
11.
Dalton Trans ; 48(38): 14233-14237, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31469135

RESUMO

Reversible turn-on fluorescent sensors of Cu(ii) are of high interest for biological studies. We re-investigate a reported sensor, showing that turn-on occurs via irreversible Cu(ii)-induced sensor oxidation only in the presence of acetonitrile. This prevents its application in biological studies and highlights the challenge of establishing a reversible Cu(ii) turn-on sensor.

12.
Chem Commun (Camb) ; 54(84): 11945-11948, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30288543

RESUMO

The catalytic redox activity of Cu(ii) bound to the motif NH2-Xxx-Zzz-His (ATCUN) with ascorbate and H2O2/O2 is very low and can be stopped via Cu(i)-chelation. This impacts its application as an artificial Cu-enzyme to degrade biomolecules via production of reactive oxygen species in a Cu(i)-chelator rich environment like the cytosol.

13.
Chemistry ; 24(32): 8029-8041, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29336493

RESUMO

Peptides and proteins with N-terminal amino acid sequences NH2 -Xxx-His (XH) and NH2 -Xxx-Zzz-His (XZH) form well-established high-affinity CuII -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity CuII -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of CuII in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong CuII binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application.


Assuntos
Complexos de Coordenação/química , Cobre/química , Oligopeptídeos/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Ligação Proteica , Conformação Proteica
14.
Chemistry ; 23(46): 10992-10996, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28759142

RESUMO

Responsive luminescent probes emitting in the near-infrared (NIR) are in high demand today for biological applications as they allow for the easy and unambiguous discrimination of autofluorescence. Due to their luminescence properties, lanthanide ions offer an interesting alternative to classical organic fluorescent dyes. This has stimulated the development of lanthanide-based responsive probes. Nevertheless, responsive probes that can operate in water with NIR-emitting lanthanide ions are scarce. In this communication, zinc fingers are shown to be versatile scaffolds to elaborate a variety of Zn2+ -responsive probes based on lanthanide emission and featuring desirable properties for the selective detection of Zn2+ in experimental conditions close to cellular. Of special interest is a NIR-emitting probe relying on Nd3+ emission.

15.
Chem Sci ; 8(2): 1658-1664, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451295

RESUMO

We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3'-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.

16.
Chem Sci ; 7(4): 2657-2665, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660038

RESUMO

Given the potential of peptide selenoesters for protein total synthesis and the paucity of methods for the synthesis of these sensitive peptide derivatives, we sought to explore the usefulness of the bis(2-selenylethyl)amido (SeEA) group, i.e. the selenium analog of the bis(2-sulfanylethyl)amido (SEA) group, for accelerating peptide bond formation. A chemoselective exchange process operating in water was devised for converting SEA peptides into the SeEA ones. Kinetic studies show that SeEA ligation, which relies on an initial N,Se-acyl shift process, proceeds significantly faster than SEA ligation. This property enabled the design of a kinetically controlled three peptide segment assembly process based on the sequential use of SeEA and SEA ligation reactions. The method was validated by the total synthesis of hepatocyte growth factor K1 (85 AA) and biotinylated NK1 (180 AA) domains.

17.
Org Lett ; 17(14): 3636-9, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136111

RESUMO

The cyclic dichalcogenides based on the bis(2-chalcogenoethyl)amide structure are latent N,S (SEA, chalcogen = S) or N,Se (SeEA, chalcogen = Se) acyl shift systems. The large difference in the reducing potential between SEA and SeEA dichalcogenides allows their sequential and selective activation by reduction. Based on these concepts, one-pot three or four peptide segment assembly processes were designed, facilitating access to branched or cyclic peptide scaffolds.


Assuntos
Amidas/química , Calcogênios/síntese química , Peptídeos Cíclicos/síntese química , Peptídeos/síntese química , Calcogênios/química , Cisteína/química , Estrutura Molecular , Peptídeos/química , Peptídeos Cíclicos/química
18.
Org Lett ; 17(13): 3354-7, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26075704

RESUMO

SEA ligation proceeds chemoselectively at pH 3, i.e., at a pH where the O-acyl isopeptides are protected by protonation. This property was used for synthesizing unprotected O-acyl isopeptides in water, starting from peptide segments which are easily accessible by the Fmoc SPPS.


Assuntos
Peptídeos/síntese química , Água/química , Acilação , Ligadura , Estrutura Molecular , Peptídeos/química
19.
Top Curr Chem ; 363: 103-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791484

RESUMO

The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.


Assuntos
Engenharia de Proteínas/métodos , Proteínas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Modelos Moleculares , Conformação Proteica
20.
Nat Protoc ; 10(2): 269-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25591010

RESUMO

Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.


Assuntos
Técnicas de Química Sintética , Peptídeos/síntese química , Ubiquitina/química , Sequência de Aminoácidos , Fluorenos , Dados de Sequência Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Técnicas de Síntese em Fase Sólida , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA