Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Res Lett ; 18(9): 094010, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-38854588

RESUMO

Climate change and progressive population development (i.e., ageing and changes in population size) are altering the temporal patterns of temperature-related mortality in Switzerland. However, limited evidence exists on how current trends in heat- and cold-related mortality would evolve in future decades under composite scenarios of global warming and population development. Moreover, the contribution of these drivers to future mortality impacts is not well-understood. Therefore, we aimed to project heat- and cold-related mortality in Switzerland under various combinations of emission and population development scenarios and to disentangle the contribution of each of these two drivers using high-resolution mortality and temperature data. We combined age-specific (<75 and ⩾75 years) temperature-mortality associations in each district in Switzerland (1990-2010), estimated through a two-stage time series analysis, with 2 km downscaled CMIP5 temperature data and population and mortality rate projections under two scenarios: RCP4.5/SSP2 and RCP8.5/SSP5. We derived heat and cold-related mortality for different warming targets (1.5 °C, 2.0 °C and 3.0 °C) using different emission and population development scenarios and compared this to the baseline period (1990-2010). Heat-related mortality is projected to increase from 312 (116; 510) in the 1990-2010 period to 1274 (537; 2284) annual deaths under 2.0 °C of warming (RCP4.5/SSP2) and to 1871 (791; 3284) under 3.0 °C of warming (RCP8.5/SSP5). Cold-related mortality will substantially increase from 4069 (1898; 6016) to 6558 (3223; 9589) annual deaths under 2.0 °C (RCP4.5/SSP2) and to 5997 (2951; 8759) under 3.0 °C (RCP8.5/SSP5). Moreover, while the increase in cold-related mortality is solely driven by population development, for heat, both components (i.e., changes in climate and population) have a similar contribution of around 50% to the projected heat-related mortality trends. In conclusion, our findings suggest that both heat- and cold-related mortality will substantially increase under all scenarios of climate change and population development in Switzerland. Population development will lead to an increase in cold-related mortality despite the decrease in cold temperature under warmer scenarios. Whereas the combination of the progressive warming of the climate and population development will substantially increase and exacerbate the total temperature-related mortality burden in Switzerland.

3.
Science ; 376(6599): 1317-1321, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709263

RESUMO

In Arabia, the first half of the sixth century CE was marked by the demise of Himyar, the dominant power in Arabia until 525 CE. Important social and political changes followed, which promoted the disintegration of the major Arabian polities. Here, we present hydroclimate records from around Southern Arabia, including a new high-resolution stalagmite record from northern Oman. These records clearly indicate unprecedented droughts during the sixth century CE, with the most severe aridity persisting between ~500 and 530 CE. We suggest that such droughts undermined the resilience of Himyar and thereby contributed to the societal changes from which Islam emerged.


Assuntos
Secas , Islamismo , Mudança Social , Arábia , Secas/história , História Medieval , Islamismo/história , Omã , Mudança Social/história
4.
Proc Natl Acad Sci U S A ; 117(27): 15443-15449, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571905

RESUMO

The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.


Assuntos
Mudança Climática/história , Clima Frio/efeitos adversos , Desastres/história , Mundo Romano/história , Erupções Vulcânicas/efeitos adversos , Alaska , Clima , Produtos Agrícolas/história , Fome Epidêmica/história , História Antiga , Camada de Gelo , Região do Mediterrâneo , Política , Erupções Vulcânicas/história
5.
Ann N Y Acad Sci ; 1436(1): 54-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29863800

RESUMO

Regional climate modeling bridges the gap between the coarse resolution of current global climate models and the regional-to-local scales, where the impacts of climate change are of primary interest. Here, we present a review of the added value of the regional climate modeling approach within the scope of paleoclimate research and discuss the current major challenges and perspectives. Two time periods serve as an example: the Holocene, including the Last Millennium, and the Last Glacial Maximum. Reviewing the existing literature reveals the benefits of regional paleo climate modeling, particularly over areas with complex terrain. However, this depends largely on the variable of interest, as the added value of regional modeling arises from a more realistic representation of physical processes and climate feedbacks compared to global climate models, and this affects different climate variables in various ways. In particular, hydrological processes have been shown to be better represented in regional models, and they can deliver more realistic meteorological data to drive ice sheet and glacier modeling. Thus, regional climate models provide a clear benefit to answer fundamental paleoclimate research questions and may be key to advance a meaningful joint interpretation of climate model and proxy data.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Temperatura
6.
Sci Total Environ ; 635: 1225-1239, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710577

RESUMO

Comprehensive flood risk modeling is crucial for understanding, assessing, and mitigating flood risk. Modeling extreme events is a well-established practice in the atmospheric and hydrological sciences and in the insurance industry. Several specialized models are used to research extreme events including atmospheric circulation models, hydrological models, hydrodynamic models, and damage and loss models. Although these model types are well established, and coupling two to three of these models has been successful, no assessment of a full and comprehensive model chain from the atmospheric to local scale flood loss models has been conducted. The present study introduces a model chain setup incorporating a GCM/RCM to model atmospheric processes, a hydrological model to estimate the catchment's runoff reaction to precipitation inputs, a hydrodynamic model to identify flood-affected areas, and a damage and loss model to estimate flood losses. Such coupling requires building interfaces between the individual models that are coherent in terms of spatial and temporal resolution and therefore calls for several pre- and post-processing steps for the individual models as well as for a computationally efficient strategy to identify and model extreme events. The results show that a coupled model chain allows for good representation of runoff for both long-term runoff characteristics and extreme events, provided a bias correction on precipitation input is applied. While the presented approach for deriving loss estimations for particular extreme events leads to reasonable results, two issues have been identified that need to be considered in further applications: (i) the identification of extreme events in long-term GCM simulations for downscaling and (ii) the representativeness of the vulnerability functions for local conditions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31423155

RESUMO

The eruption of Tambora (Indonesia) in April 1815 had substantial effects on global climate and led to the 'Year Without a Summer' of 1816 in Europe and North America. Although a tragic event-tens of thousands of people lost their lives-the eruption also was an 'experiment of nature' from which science has learned until today. The aim of this study is to summarize our current understanding of the Tambora eruption and its effects on climate as expressed in early instrumental observations, climate proxies and geological evidence, climate reconstructions, and model simulations. Progress has been made with respect to our understanding of the eruption process and estimated amount of SO2 injected into the atmosphere, although large uncertainties still exist with respect to altitude and hemispheric distribution of Tambora aerosols. With respect to climate effects, the global and Northern Hemispheric cooling are well constrained by proxies whereas there is no strong signal in Southern Hemisphere proxies. Newly recovered early instrumental information for Western Europe and parts of North America, regions with particularly strong climate effects, allow Tambora's effect on the weather systems to be addressed. Climate models respond to prescribed Tambora-like forcing with a strengthening of the wintertime stratospheric polar vortex, global cooling and a slowdown of the water cycle, weakening of the summer monsoon circulations, a strengthening of the Atlantic Meridional Overturning Circulation, and a decrease of atmospheric CO2. Combining observations, climate proxies, and model simulations for the case of Tambora, a better understanding of climate processes has emerged. WIREs Clim Change 2016, 7:569-589. doi: 10.1002/wcc.407 This article is categorized under: 1Paleoclimates and Current Trends > Paleoclimate.

8.
Nature ; 523(7558): 71-4, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135450

RESUMO

The North Atlantic Oscillation (NAO) is the major source of variability in winter atmospheric circulation in the Northern Hemisphere, with large impacts on temperature, precipitation and storm tracks, and therefore also on strategic sectors such as insurance, renewable energy production, crop yields and water management. Recent developments in dynamical methods offer promise to improve seasonal NAO predictions, but assessing potential predictability on multi-annual timescales requires documentation of past low-frequency variability in the NAO. A recent bi-proxy NAO reconstruction spanning the past millennium suggested that long-lasting positive NAO conditions were established during medieval times, explaining the particularly warm conditions in Europe during this period; however, these conclusions are debated. Here, we present a yearly NAO reconstruction for the past millennium, based on an initial selection of 48 annually resolved proxy records distributed around the Atlantic Ocean and built through an ensemble of multivariate regressions. We validate the approach in six past-millennium climate simulations, and show that our reconstruction outperforms the bi-proxy index. The final reconstruction shows no persistent positive NAO during the medieval period, but suggests that positive phases were dominant during the thirteenth and fourteenth centuries. The reconstruction also reveals that a positive NAO emerges two years after strong volcanic eruptions, consistent with results obtained from models and satellite observations for the Mt Pinatubo eruption in the Philippines.


Assuntos
Clima , Modelos Teóricos , Oceano Atlântico
9.
PLoS One ; 6(9): e25133, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966436

RESUMO

Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483-2006 period correlates at 0.80 with June-August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years.


Assuntos
Estações do Ano , Temperatura , Mudança Climática , Países Escandinavos e Nórdicos
10.
Nature ; 463(7280): 527-30, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20110999

RESUMO

The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive and are likely to provide a positive feedback leading to amplified anthropogenic warming. Owing to this feedback, at timescales ranging from interannual to the 20-100-kyr cycles of Earth's orbital variations, warming of the climate system causes a net release of CO(2) into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed gamma), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections. Here we quantify the median gamma as 7.7 p.p.m.v. CO(2) per degrees C warming, with a likely range of 1.7-21.4 p.p.m.v. CO(2) per degrees C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO(2) data from three ice cores, provide robust constraints for gamma on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of >200,000 members, quantification of gamma is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of gamma calculated from any of ten coupled carbon-climate models, we find that gamma is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P < 0.05) than recent pre-industrial empirical estimates of approximately 40 p.p.m.v. CO(2) per degrees C (refs 6, 7), and correspondingly suggest approximately 80% less potential amplification of ongoing global warming.


Assuntos
Carbono/metabolismo , Mudança Climática , Modelos Teóricos , Dióxido de Carbono/análise , Gelo/análise , Temperatura , Fatores de Tempo
11.
Nature ; 434(7035): 830-3, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15829944
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA