Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3733, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740737

RESUMO

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry. Here we show that bristle formation requires a chitin-producing enzyme specifically expressed in the chaetoblasts. Chaetoblasts exhibit dynamic cell surfaces with stereotypical patterns of actin-rich microvilli. These microvilli can be matched with internal and external structures of bristles reconstructed from serial block-face electron micrographs. Individual chitin teeth are deposited by microvilli in an extension-disassembly cycle resembling a biological 3D printer. Consistently, pharmacological interference with actin dynamics leads to defects in tooth formation. Our study reveals that both material and shape of bristles are encoded by the same cell, and that microvilli play a role in micro- to submicrometric sculpting of biomaterials.


Assuntos
Quitina , Microvilosidades , Microvilosidades/ultraestrutura , Animais , Quitina/metabolismo , Quitina/química , Poliquetos/ultraestrutura , Actinas/metabolismo , Morfogênese
2.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603542

RESUMO

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Humanos , Animais , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relógios Circadianos/genética , Atividade Motora , Drosophila melanogaster/metabolismo
3.
Integr Comp Biol ; 63(2): 372-381, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36866518

RESUMO

Access to newer, fast, and cheap sequencing techniques, particularly on the single-cell level, have made transcriptomic data of tissues or single cells accessible to many researchers. As a consequence, there is an increased need for in situ visualization of gene expression or encoded proteins to validate, localize, or help interpret such sequencing data, as well as put them in context with cellular proliferation. A particular challenge for labeling and imaging transcripts are complex tissues that are often opaque and/or pigmented, preventing easy visual inspection. Here, we introduce a versatile protocol that combines in situ hybridization chain reaction, immunohistochemistry, and proliferative cell labeling using 5-ethynyl-2'-deoxyuridine, and demonstrate its compatibility with tissue clearing. As a proof-of-concept, we show that our protocol allows for the parallel analysis of cell proliferation, gene expression, and protein localization in bristleworm heads and trunks.


Assuntos
Perfilação da Expressão Gênica , Animais , Imuno-Histoquímica , Proliferação de Células
4.
Ann Rev Mar Sci ; 15: 509-538, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36028229

RESUMO

The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.


Assuntos
Organismos Aquáticos , Relógios Biológicos , Animais , Organismos Aquáticos/fisiologia , Biologia Marinha , Oceanos e Mares , Ecossistema
5.
Curr Biol ; 32(22): R1269-R1271, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413969

RESUMO

Grass puffers are fish that engage in mass spawning controlled by the phase of the moon. A new study shows that prostaglandins released by males and females fine tune these events. In addition, regulation of gnrh1 by a transcription factor expressed in a semilunar rhythm suggests a timing signal for the long-term coordination of gonadal maturation.


Assuntos
Lua , Periodicidade , Animais , Feminino , Masculino , Gônadas , Peixes , Regulação da Expressão Gênica
6.
Nat Commun ; 13(1): 5220, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064778

RESUMO

The moon's monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry's co-factor Flavin Adenine Dinucleotide. In Platynereis, L-Cry's sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a "valence interpreter" that provides entraining photoreceptor(s) with light source and moon phase information.


Assuntos
Criptocromos , Lua , Luz , Opsinas , Reprodução , Luz Solar
7.
Proc Natl Acad Sci U S A ; 119(22): e2115725119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622889

RESUMO

Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights' darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome's principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Lua , Poliquetos , Animais , Criptocromos/genética , Criptocromos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Poliquetos/genética , Poliquetos/fisiologia , Opsinas de Bastonetes/genética , Luz Solar
8.
Evodevo ; 12(1): 10, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579780

RESUMO

The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.

9.
Elife ; 102021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350831

RESUMO

Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.


Assuntos
Evolução Biológica , Mecanorreceptores/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Poliquetos/fisiologia , Animais , Evolução Molecular
10.
EPMA J ; 12(2): 141-153, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188726

RESUMO

BACKGROUND/AIMS: Exposure to bioactive compounds from nutrition, pharmaceuticals, environmental contaminants or other lifestyle habits may affect the human organism. To gain insight into the effects of these influences, as well as the fundamental biochemical mechanisms behind them, individual molecular profiling seems to be a promising tool and may support the further development of predictive, preventive and personalised medicine. METHODS: We developed an assay, called metabo-tip for the analysis of sweat, collected from fingertips, using mass spectrometry-by far the most comprehensive and sensitive method for such analyses. To evaluate this assay, we exposed volunteers to various xenobiotics using standardised protocols and investigated their metabolic response. RESULTS: As early as 15 min after the consumption of a cup of coffee, 50 g of dark chocolate or a serving of citrus fruits, significant changes in the sweat composition of the fingertips were observed, providing relevant information in regard to the ingested substances. This included not only health-promoting bioactive compounds but also potential hazardous substances. Furthermore, the identification of metabolites from orally ingested medications such as metamizole indicated the applicability of this assay to observe specific enzymatic processes in a personalised fashion. Remarkably, we found that the sweat composition fluctuated in a diurnal rhythm, supporting the hypothesis that the composition of sweat can be influenced by endogenous metabolic activities. This was further corroborated by the finding that histamine was significantly increased in the metabo-tip assay in individuals with allergic reactions. CONCLUSION: Metabo-tip analysis may have a large number of practical applications due to its analytical power, non-invasive character and the potential of frequent sampling, especially regarding the individualised monitoring of specific lifestyle and influencing factors. The extraordinarily rich individualised metabolomics data provided by metabo-tip offer direct access to individual metabolic activities and will thus support predictive preventive personalised medicine. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00241-6.

11.
Cell Tissue Res ; 383(3): 987-1002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367974

RESUMO

Extracellular signals play essential roles during embryonic patterning by providing positional information in a concentration-dependent manner, and many such signals, like Wnt, fibroblast growth factor (FGF), Hedgehog (Hh), and retinoic acid, act by being secreted into the extracellular space, thereby triggering receptor-mediated responses in other cells. Isthmin1 (ism1) is a secreted protein whose gene expression pattern coincides with that of early dorsal determinants, nodal ligand genes like sqt and cyc, and with fgf8 during various phases of zebrafish development. Ism1 functions in early embryonic patterning and development are poorly understood; however, it has recently been shown to interact with nodal pathway genes to control organ asymmetry in chicken. Here, we show that misexpression of ism1 deletion constructs disrupts embryonic patterning in zebrafish and exhibits genetic interactions with both Fgf and nodal signaling. Unlike Fgf and nodal pathway mutants, CRISPR/Cas9-engineered ism1 mutants did not show obvious developmental defects. Further, in vivo single molecule fluorescence correlation spectroscopy (FCCS) showed that Ism1 diffuses freely in the extra-cellular space, with a diffusion coefficient similar to that of Fgf8a; however, our measurements do not support direct molecular interactions between Ism1 and either nodal ligands or Fgf8a in the developing zebrafish embryo. Together, data from gain- and loss-of-function experiments suggest that zebrafish Ism1 plays a complex role in regulating extracellular signals during early embryonic development.


Assuntos
Animais Geneticamente Modificados/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento
12.
Proc Natl Acad Sci U S A ; 117(44): 27578-27586, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067391

RESUMO

The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.


Assuntos
Aliivibrio fischeri/metabolismo , Ritmo Circadiano/fisiologia , Decapodiformes/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Movimento Celular , Quitina/metabolismo , Decapodiformes/microbiologia , Feminino , Hemócitos/metabolismo , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Simbiose/fisiologia
13.
Sci Adv ; 6(22): eaba0365, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523996

RESUMO

Tissue clearing combined with deep imaging has emerged as a powerful alternative to classical histological techniques. Whereas current techniques have been optimized for imaging selected nonpigmented organs such as the mammalian brain, natural pigmentation remains challenging for most other biological specimens of larger volume. We have developed a fast DEpigmEntation-Plus-Clearing method (DEEP-Clear) that is easily incorporated in existing workflows and combines whole system labeling with a spectrum of detection techniques, ranging from immunohistochemistry to RNA in situ hybridization, labeling of proliferative cells (EdU labeling) and visualization of transgenic markers. With light-sheet imaging of whole animals and detailed confocal studies on pigmented organs, we provide unprecedented insight into eyes, whole nervous systems, and subcellular structures in animal models ranging from worms and squids to axolotls and zebrafish. DEEP-Clear thus paves the way for the exploration of species-rich clades and developmental stages that are largely inaccessible by regular imaging approaches.

14.
Proc Natl Acad Sci U S A ; 117(2): 1097-1106, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31843923

RESUMO

The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Homeostase , Proteínas de Insetos/metabolismo , Lua , Neuropeptídeos/metabolismo , Poliquetos/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Encéfalo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/genética , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Invertebrados/genética , Neuropeptídeos/genética , Filogenia , Poliquetos/genética , Poliquetos/crescimento & desenvolvimento , Receptores de Neuropeptídeos , Receptores de Peptídeos/genética , Transdução de Sinais/genética , Fatores de Transcrição
15.
PLoS One ; 14(12): e0226156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805142

RESUMO

Platynereis dumerilii is a marine segmented worm (annelid) with externally fertilized embryos and it can be cultured for the full life cycle in the laboratory. The accessibility of embryos and larvae combined with the breadth of the established molecular and functional techniques has made P. dumerilii an attractive model for studying development, cell lineages, cell type evolution, reproduction, regeneration, the nervous system, and behavior. Traditionally, these worms have been kept in rooms dedicated for their culture. This allows for the regulation of temperature and light cycles, which is critical to synchronizing sexual maturation. However, regulating the conditions of a whole room has limitations, especially if experiments require being able to change culturing conditions. Here we present scalable and flexible culture methods that provide ability to control the environmental conditions, and have a multi-purpose culture space. We provide a closed setup shelving design with proper light conditions necessary for P. dumerilii to mature. We also implemented a standardized method of feeding P. dumerilii cultures with powdered spirulina which relieves the ambiguity associated with using frozen spinach, and helps standardize nutrition conditions across experiments and across different labs. By using these methods, we were able to raise mature P. dumerilii, capable of spawning and producing viable embryos for experimentation and replenishing culture populations. These methods will allow for the further accessibility of P. dumerilii as a model system, and they can be adapted for other aquatic organisms.


Assuntos
Técnicas de Cultura Embrionária/métodos , Poliquetos/crescimento & desenvolvimento , Animais , Feminino , Larva , Estágios do Ciclo de Vida , Masculino , Modelos Biológicos , Poliquetos/embriologia
16.
Elife ; 82019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767890

RESUMO

Many marine animals, ranging from corals to fishes, synchronise reproduction to lunar cycles. In the annelid Platynereis dumerilii, this timing is orchestrated by an endogenous monthly (circalunar) clock entrained by moonlight. Whereas daily (circadian) clocks cause extensive transcriptomic and proteomic changes, the quality and quantity of regulations by circalunar clocks have remained largely elusive. By establishing a combined transcriptomic and proteomic profiling approach, we provide first systematic insight into the molecular changes in Platynereis heads between circalunar phases, and across sexual differentiation and maturation. Whereas maturation elicits large transcriptomic and proteomic changes, the circalunar clock exhibits only minor transcriptomic, but strong proteomic regulation. Our study provides a versatile extraction technique and comprehensive resources. It corroborates that circadian and circalunar clock effects are likely distinct and identifies key molecular brain signatures for reproduction, sex and circalunar clock phase. Examples include prepro-whitnin/proctolin and ependymin-related proteins as circalunar clock targets.


Assuntos
Anelídeos/genética , Encéfalo/metabolismo , Relógios Circadianos/genética , Proteoma/metabolismo , Proteômica , Maturidade Sexual/genética , Transcriptoma/genética , Animais , Feminino , Masculino , Filogenia , Transdução de Sinais/genética
17.
Genome Biol ; 19(1): 180, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373643

RESUMO

As part of our Q&A series, Genome Biology spoke to four scientists about their personal experiences as parents in their careers to highlight the challenges of researchers having children and the support they need in this regard. Our participants also included a couple (Kristin Tessmar-Raible and Florian Raible), as we were interested to know whether both parents being active researchers can have an impact. One of our participants wishes to remain anonymous.


Assuntos
Biologia , Escolha da Profissão , Tomada de Decisões , Pais/psicologia , Pesquisadores/psicologia , Criança , Humanos
18.
Genetics ; 210(2): 435-443, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143594

RESUMO

Sponges (Porifera) represent one of the most basally branching animal clades with key relevance for evolutionary studies, stem cell biology, and development. Despite a long history of sponges as experimental model systems, however, functional molecular studies are still very difficult to perform in these animals. Here, we report the establishment of transgenic technology as a basic and versatile experimental tool for sponge research. We demonstrate that slice explants of the demosponge Suberites domuncula regenerate functional sponge tissue and can be cultured for extended periods of time, providing easy experimental access under controlled conditions. We further show that an engineered expression construct driving the enhanced green fluorescence protein (egfp) gene under control of the Suberites domuncula ß-actin locus can be transfected into such tissue cultures, and that faithfully spliced transcripts are produced from such transfected DNA. Finally, by combining fluorescence-activated cell sorting (FACS) with quantitative PCR, we validate that transfected cells can be specifically reisolated from tissue based on their fluorescence. Although the number of detected enhanced green fluorescent protein (EGFP)-expressing cells is still limited, our approach represents the first successful introduction and expression of exogenous DNA in a sponge. These results represent a significant advance for the use of transgenic technology in a cornerstone phylum, for instance for the use in lineage tracing experiments.


Assuntos
Suberites/genética , Transfecção/métodos , Actinas/genética , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
19.
Front Neurol ; 8: 189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553258

RESUMO

Organisms have evolved to cope with geophysical cycles of different period lengths. In this review, we focus on the adaptations of animals to the lunar cycle, specifically, on the occurrence of biological rhythms with monthly (circalunar) or semi-monthly (circasemilunar) period lengths. Systematic experimental investigation, starting in the early twentieth century, has allowed scientists to distinguish between mythological belief and scientific facts concerning the influence of the lunar cycle on animals. These studies revealed that marine animals of various taxa exhibit circalunar or circasemilunar reproductive rhythms. Some of these rely on endogenous oscillators (circalunar or circasemilunar clocks), whereas others are directly driven by external cues, such as the changes in nocturnal illuminance. We review current insight in the molecular and cellular mechanisms involved in circalunar rhythms, focusing on recent work in corals, annelid worms, midges, and fishes. In several of these model systems, the transcript levels of some core circadian clock genes are affected by both light and endogenous circalunar oscillations. How these and other molecular changes relate to the changes in physiology or behavior over the lunar cycle remains to be determined. We further review the possible relevance of circalunar rhythms for terrestrial species, with a particular focus on mammalian reproduction. Studies on circalunar rhythms of conception or birth rates extend to humans, where the lunar cycle was suggested to also affect sleep and mental health. While these reports remain controversial, factors like the increase in "light pollution" by artificial light might contribute to discrepancies between studies. We finally discuss the existence of circalunar oscillations in mammalian physiology. We speculate that these oscillations could be the remnant of ancient circalunar oscillators that were secondarily uncoupled from a natural entrainment mechanism, but still maintained relevance for structuring the timing of reproduction or physiology. The analysis and comparison of circalunar rhythms and clocks are currently challenging due to the heterogeneity of samples concerning species diversity, environmental conditions, and chronobiological conditions. We suggest that future research will benefit from the development of standardized experimental paradigms, and common principles for recording and reporting environmental conditions, especially light spectra and intensities.

20.
Elife ; 52016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27894418

RESUMO

Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo, directly inhibiting a central energy-costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides.


Assuntos
Anelídeos/fisiologia , Encéfalo/fisiologia , Ácidos Graxos Insaturados/metabolismo , Hormônios/metabolismo , Reprodução , Animais , Transcrição Gênica/efeitos dos fármacos , Vitelogeninas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA