RESUMO
The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting gene-disease associations from gene annotations remains challenging. Here, we introduce Mantis-ML 2.0, a framework integrating AstraZeneca's Biological Insights Knowledge Graph and numerous tabular datasets, to assess gene-disease probabilities throughout the phenome. We use graph neural networks, capturing the graph's holistic structure, and train them on hundreds of balanced datasets via a robust semi-supervised learning framework to provide gene-disease probabilities across the human exome. Mantis-ML 2.0 incorporates natural language processing to automate disease-relevant feature selection for thousands of diseases. The enhanced models demonstrate a 6.9% average classification power boost, achieving a median receiver operating characteristic (ROC) area under curve (AUC) score of 0.90 across 5220 diseases from Human Phenotype Ontology, OpenTargets, and Genomics England. Notably, Mantis-ML 2.0 prioritizes associations from an independent UK Biobank phenome-wide association study (PheWAS), providing a stronger form of triaging and mitigating against underpowered PheWAS associations. Results are exposed through an interactive web resource.
Assuntos
Redes Neurais de Computação , Humanos , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenômica/métodos , Fenótipo , Biobanco do Reino Unido , Reino UnidoRESUMO
The druggability of targets is a crucial consideration in drug target selection. Here, we adopt a stochastic semi-supervised ML framework to develop DrugnomeAI, which estimates the druggability likelihood for every protein-coding gene in the human exome. DrugnomeAI integrates gene-level properties from 15 sources resulting in 324 features. The tool generates exome-wide predictions based on labelled sets of known drug targets (median AUC: 0.97), highlighting features from protein-protein interaction networks as top predictors. DrugnomeAI provides generic as well as specialised models stratified by disease type or drug therapeutic modality. The top-ranking DrugnomeAI genes were significantly enriched for genes previously selected for clinical development programs (p value < 1 × 10-308) and for genes achieving genome-wide significance in phenome-wide association studies of 450 K UK Biobank exomes for binary (p value = 1.7 × 10-5) and quantitative traits (p value = 1.6 × 10-7). We accompany our method with a web application ( http://drugnomeai.public.cgr.astrazeneca.com ) to visualise the druggability predictions and the key features that define gene druggability, per disease type and modality.
Assuntos
Aprendizado de Máquina , Software , Humanos , Sistemas de Liberação de MedicamentosRESUMO
T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases. To support T-cell research, we developed the DES-Tcell knowledgebase (KB). This KB incorporates text- and data-mined information that can expedite retrieval and exploration of T-cell relevant information from the large volume of published T-cell-related research. This KB enables exploration of data through concepts from 15 topic-specific dictionaries, including immunology-related genes, mutations, pathogens, and pathways. We developed three case studies using DES-Tcell, one of which validates effective retrieval of known associations by DES-Tcell. The second and third case studies focuses on concepts that are common to Grave's disease (GD) and Hashimoto's thyroiditis (HT). Several reports have shown that up to 20% of GD patients treated with antithyroid medication develop HT, thus suggesting a possible conversion or shift from GD to HT disease. DES-Tcell found miR-4442 links to both GD and HT, and that miR-4442 possibly targets the autoimmune disease risk factor CD6, which provides potential new knowledge derived through the use of DES-Tcell. According to our understanding, DES-Tcell is the first KB dedicated to exploring T-cell-relevant information via literature-mining, data-mining, and topic-specific dictionaries.
Assuntos
Doença de Graves/metabolismo , Linfócitos T/metabolismo , Doenças Autoimunes/metabolismo , Doença de Hashimoto/metabolismo , HumanosRESUMO
The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target-disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.
Assuntos
Antineoplásicos/uso terapêutico , Drogas em Investigação/uso terapêutico , Bases de Conhecimento , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Software , Antineoplásicos/química , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Drogas em Investigação/química , Humanos , Internet , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologiaRESUMO
Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.
Assuntos
Doença/genética , PubMed , RNA/metabolismo , Humanos , Oxirredução , Projetos de PesquisaRESUMO
The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational approaches capable of identifying potential DTIs with minimum error rate are increasingly being pursued. These computational approaches aim to narrow down the search space for novel DTIs and shed light on drug functioning context. Most methods developed to date use binary classification to predict if the interaction between a drug and its target exists or not. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If that strength is not sufficiently strong, such DTI may not be useful. Therefore, the methods developed to predict drug-target binding affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of the existing methods that predict DTBA. We focus on the methods developed using artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches, as well as related benchmark datasets and databases. Furthermore, guidance and recommendations are provided that cover the gaps and directions of the upcoming work in this research area. To the best of our knowledge, this is the first comprehensive comparison analysis of tools focused on DTBA with reference to AI/ML/DL.
RESUMO
In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
Assuntos
Biologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Oxirredução , Estresse OxidativoRESUMO
During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype. However, mutations are often the cause of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. We approached this problem by analyzing a vast amount of published information linking mutations to disease states. Based on such information, we developed the DES-Mutation knowledgebase which allows for exploration of not only mutation-disease links, but also links between mutations and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially novel information involving disease mutations. To our knowledge, this is the first mutation-disease knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of different mutation types and their associations with terms from multiple thematic dictionaries.
Assuntos
Doenças Genéticas Inatas/genética , Bases de Conhecimento , Mutação , Software , HumanosRESUMO
One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area. This article is categorized under: 1Computer and Information Science > Chemoinformatics2Computer and Information Science > Computer Algorithms and Programming.
RESUMO
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models. WIREs Comput Mol Sci 2016, 6:147-172. doi: 10.1002/wcms.1240 For further resources related to this article, please visit the WIREs website.
RESUMO
Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases.
Assuntos
Metilação de DNA , Bases de Dados Genéticas , Doença/genética , Animais , Mineração de Dados , Progressão da Doença , Expressão Gênica , Genes , Humanos , InternetRESUMO
BACKGROUND: In a number of diseases, certain genes are reported to be strongly methylated and thus can serve as diagnostic markers in many cases. Scientific literature in digital form is an important source of information about methylated genes implicated in particular diseases. The large volume of the electronic text makes it difficult and impractical to search for this information manually. METHODOLOGY: We developed a novel text mining methodology based on a new concept of position weight matrices (PWMs) for text representation and feature generation. We applied PWMs in conjunction with the document-term matrix to extract with high accuracy associations between methylated genes and diseases from free text. The performance results are based on large manually-classified data. Additionally, we developed a web-tool, DEMGD, which automates extraction of these associations from free text. DEMGD presents the extracted associations in summary tables and full reports in addition to evidence tagging of text with respect to genes, diseases and methylation words. The methodology we developed in this study can be applied to similar association extraction problems from free text. CONCLUSION: The new methodology developed in this study allows for efficient identification of associations between concepts. Our method applied to methylated genes in different diseases is implemented as a Web-tool, DEMGD, which is freely available at http://www.cbrc.kaust.edu.sa/demgd/. The data is available for online browsing and download.