Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2308009120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459515

RESUMO

As one of the most compact electrochemical energy storage systems, lithium-ion batteries (LIBs) are playing an indispensable role in the process of vehicle electrification to accelerate the shift to sustainable mobility. Making battery electrodes thicker is a promising strategy for improving the energy density of LIBs which is essential for applications with weight or volume constraints, such as electric-powered transportation; however, their power densities are often significantly restricted due to elongated and tortuous charge traveling distances. Here, we propose an effective methodology that couples bidirectional freeze-casting and compression-induced densification to create densified vertically lamellar electrode architectures for compact energy storage. The vertically lamellar architectures not only overcome the critical thickness limit for conventional electrodes but also facilitate and redistribute the lithium-ion flux enabling both high rate capability and stable cyclability. Furthermore, this proposed methodology is universal as demonstrated in various electrochemical active material systems. This study offers a facile approach that realizes simultaneous high energy and high power in high-loading battery electrodes and provides useful rationales in designing electrode architectures for scalable energy storage systems.

2.
Proc Natl Acad Sci U S A ; 119(40): e2212777119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161896

RESUMO

As one of the prevailing energy storage systems, lithium-ion batteries (LIBs) have become an essential pillar in electric vehicles (EVs) during the past decade, contributing significantly to a carbon-neutral future. However, the complete transition to electric vehicles requires LIBs with yet higher energy and power densities. Here, we propose an effective methodology via controlled nanosheet self-assembly to prepare low-tortuosity yet high-density and high-toughness thick electrodes. By introducing a delicate densification in a three-dimensionally interconnected nanosheet network to maintain its vertical architecture, facile electron and ion transports are enabled despite their high packing density. This dense and thick electrode is capable of delivering a high volumetric capacity >1,600 mAh cm-3, with an areal capacity up to 32 mAh cm-2, which is among the best reported in the literature. The high-performance electrodes with superior mechanical and electrochemical properties demonstrated in this work provide a potentially universal methodology in designing advanced battery electrodes with versatile anisotropic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA