Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Nat Commun ; 14(1): 6209, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798266

RESUMO

Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.


Assuntos
Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Criança , Leucemia Mieloide Aguda/patologia , Indução de Remissão , Recidiva , Análise de Célula Única , Antígenos de Neoplasias , Proteínas de Transporte , Proteínas Mitocondriais/metabolismo
3.
Genome Med ; 15(1): 83, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845689

RESUMO

BACKGROUND: Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediatric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape. METHODS: We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcriptomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were compared in MPAL subtypes. RESULTS: B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML samples. Genes overexpressed in both MPAL subtypes' blast cells compared to AML, ALL, and healthy BM included MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding subtypes. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, including selective upregulation of the IL-16 pathway in relapsed samples. CONCLUSIONS: We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed to validate these findings.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Doença Aguda , Fenótipo , Análise de Sequência de RNA , Microambiente Tumoral
4.
Lab Chip ; 23(22): 4804-4820, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830228

RESUMO

Genetic reprogramming of immune cells to recognize and target tumor cells offers a possibility of long-term cure. Cell therapies, however, lack simple and affordable manufacturing workflows, especially to genetically edit immune cells to more effectively target cancer cells and avoid immune suppression mechanisms. Microfluidics is a pathway to improve the manufacturing precision of gene modified cells. However, to date, it remains to be demonstrated that microfluidic treatment preserves the functionality of T cell products in a complete workflow. In this study, we used microfluidics to perform CRISPR/Cas9 gene editing of CD5, a negative T-cell regulator, followed by the insertion of a chimeric antigen receptor (CAR) transgene via lentiviral vector transduction to generate CAR T cells targeted against the B cell antigen CD19. As part of the workflow, we have optimized a microfluidic device that relies on convective volume exchange between cells and surrounding fluid to deliver guide RNA and Cas9 ribonucleoprotein to primary T cells. We comprehensively tested critical design features of the device to improve the gene-edited product yield. By combining high-speed video and cell mechanics measurements using the atomic force microscope, we validate a model that relates the device design features to cell properties. Our findings showed enhanced performance was obtained by focusing the cells to counteract the flow resistance caused by the ridge constrictions, providing a ridge layout that allows sufficient cycles of compression and time for volume recovery, and including a gutter to clear aggregates that could reduce cell viability. The optimized device was used in a workflow to generate CD5-knockout CD19 CAR T cells. The microfluidics approach resulted in >60% CD5 editing efficiency, ≥80% cell viability, similar memory phenotype composition as unprocessed cells, and superior cell growth. The microfluidics workflow yielded 4-fold increase of edited T cells compared to an electroporation workflow post-expansion. The transduced CAR T cells showed similar transduction efficiency and cytotoxicity against CD19-positive leukemia cells. Moreover, patient-derived T cells showed the ability to be similarly edited, though their distinct biomechanics resulted in slightly lower outcomes. Microfluidics-based manufacturing is a promising path towards more productive clinical manufacturing of gene edited CAR T cells.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Microfluídica , Fluxo de Trabalho , Edição de Genes , Transfecção , Imunoterapia Adotiva/métodos
5.
Sci Rep ; 13(1): 12556, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532715

RESUMO

Different driver mutations and/or chromosomal aberrations and dysregulated signaling interactions between leukemia cells and the immune microenvironment have been implicated in the development of T-cell acute lymphoblastic leukemia (T-ALL). To better understand changes in the bone marrow microenvironment and signaling pathways in pediatric T-ALL, bone marrows collected at diagnosis (Dx) and end of induction therapy (EOI) from 11 patients at a single center were profiled by single cell transcriptomics (10 Dx, 5 paired EOI, 1 relapse). T-ALL blasts were identified by comparison with healthy bone marrow cells. T-ALL blast-associated gene signature included SOX4, STMN1, JUN, HES4, CDK6, ARMH1 among the most significantly overexpressed genes, some of which are associated with poor prognosis in children with T-ALL. Transcriptome profiles of the blast cells exhibited significant inter-patient heterogeneity. Post induction therapy expression profiles of the immune cells revealed significant changes. Residual blast cells in MRD+ EOI samples exhibited significant upregulation (P < 0.01) of PD-1 and RhoGDI signaling pathways. Differences in cellular communication were noted in the presence of residual disease in T cell and hematopoietic stem cell compartments in the bone marrow. Together, these studies generate new insights and expand our understanding of the bone marrow landscape in pediatric T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma , Medula Óssea , Recidiva , Células da Medula Óssea , Prognóstico , Microambiente Tumoral/genética , Fatores de Transcrição SOXC
6.
Mol Ther Oncolytics ; 29: 145-157, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387794

RESUMO

Adoptive cell therapy (ACT) utilizing γδ T cells is becoming a promising option for the treatment of cancer, because it offers an off-the-shelf allogeneic product that is safe, potent, and clinically effective. Approaches to engineer or enhance immune-competent cells for ACT, like expression of chimeric antigen receptors (CARs) or combination treatments with bispecific T cell engagers, have improved the specificity and cytotoxic potential of ACTs and have shown great promise in preclinical and clinical settings. Here, we test whether electroporation of γδ T cells with CAR or secreted bispecific T cell engager (sBite) mRNA is an effective approach to improve the cytotoxicity of γδ T cells. Using a CD19-specific CAR, approximately 60% of γδ T cells are modified after mRNA electroporation and these cells show potent anticancer activity in vitro and in vivo against two CD19-positive cancer cell lines. In addition, expression and secretion of a CD19 sBite enhances γδ T cell cytotoxicity, both in vitro and in vivo, and promotes killing of target cells by modified and unmodified γδ T cells. Taken together, we show that transient transfection of γδ T cells with CAR or sBite mRNA by electroporation can be an effective treatment platform as a cancer therapeutic.

7.
Biomacromolecules ; 24(3): 1164-1172, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36745712

RESUMO

Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.


Assuntos
Citocinas , Neoplasias , Humanos , Polímeros , Fatores Imunológicos , Polietilenoglicóis
8.
Explor Immunol ; 2(3): 334-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783107

RESUMO

Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αß T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.

9.
Nat Commun ; 13(1): 1157, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241678

RESUMO

The incidence of obesity is rising with greater than 40% of the world's population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance.


Assuntos
Linfoma de Burkitt , Galectinas , Obesidade , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Apoptose , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Galectinas/metabolismo , Humanos , Camundongos , Obesidade/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral/fisiologia
10.
Blood ; 139(4): 523-537, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084470

RESUMO

Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.


Assuntos
Imunoterapia Adotiva/métodos , Isoquinolinas/uso terapêutico , Leucemia Linfocítica Crônica de Células B/terapia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Purinas/uso terapêutico , Animais , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Epigênese Genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos
12.
Cancer Rep (Hoboken) ; 4(4): e1372, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33784031

RESUMO

BACKGROUND: Mixed phenotype acute leukemia (MPAL) is a rare subset of acute leukemia in the pediatric population associated with genetic alterations seen in both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). CASE: We describe a patient with MPAL with a NUP98 (nucleoporin 98)-NSD1 gene fusion (nuclear receptor binding SET domain protein1) and NRAS (neuroblastoma RAS viral oncogene homolog mutation) p.Gly61Arg mutation who was treated with upfront AML-based chemotherapy, received hematopoietic stem cell transplant (HSCT), but unfortunately died from relapsed disease. CONCLUSION: This case highlights the challenges faced in choosing treatment options in MPAL patients with complex genomics, with predominant myeloid features.


Assuntos
GTP Fosfo-Hidrolases/genética , Leucemia Mieloide Aguda/diagnóstico , Proteínas de Membrana/genética , Neoplasias Complexas Mistas/diagnóstico , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Medula Óssea/patologia , Evolução Fatal , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Mutação , Terapia Neoadjuvante , Neoplasias Complexas Mistas/genética , Neoplasias Complexas Mistas/patologia , Neoplasias Complexas Mistas/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
13.
Aging Cell ; 20(2): e13309, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33480151

RESUMO

Aging-associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging-associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine, and we present data demonstrating that IL-37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin-37 (IL-37) in aged mice reduces or prevents aging-associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL-37 expression decreases the surface expression of programmed cell death protein 1 (PD-1) and augments cytokine production from aged T-cells. Improved T-cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T-cells and Lat in CD8+ T-cells when aged mice were treated with recombinant IL-37 (rIL-37) but not control immunoglobin (Control Ig). Importantly, IL-37-mediated rejuvenation of aged endogenous T-cells was also observed in aged chimeric antigen receptor (CAR) T-cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL-37 in boosting the function of aged T-cells and highlight its therapeutic potential to overcome aging-associated immunosenescence.


Assuntos
Envelhecimento , Terapia Baseada em Transplante de Células e Tecidos , Interleucina-1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Cytotherapy ; 23(1): 12-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168453

RESUMO

Engagement between the natural killer group 2, member D (NKG2D) receptor and its ligands is one of the main mechanisms used by immune cells to target stressed cells for cell death. NKG2D ligands are known markers of cellular stress and are often upregulated on tumor cells. Certain drugs can further increase NKG2D ligand levels, thereby making tumor cells more susceptible to immune cell detection and destruction. However, the effectiveness of this approach appears to be limited with drug treatment alone, possibly due to immune dysregulation in the setting of malignancies. We hypothesized that a more effective approach would be a combination of NKG2D ligand-inducing drugs, such as the proteasome inhibitor bortezomib, and ex vivo-expanded peripheral blood γδ T cells (i.e., Vγ9Vδ2 T cells). Acute myeloid leukemia (AML) is a high-risk hematologic malignancy, and treatment has shown limited benefit with the addition of bortezomib to standard chemotherapy regimens. Two AML cells lines, Nomo-1 and Kasumi-1, were treated with increasing concentrations of bortezomib, and changes in NKG2D ligand expression were measured. Bortezomib treatment significantly increased expression of the NKG2D ligand UL16 binding protein (ULBP) 2/5/6 in both cell lines. Vγ9Vδ2 T cells were expanded and isolated from peripheral blood of healthy donors to generate a final cellular product with a mean of 96% CD3+/γδ T-cell receptor-positive cells. Combination treatment of the AML cell lines with γδ T cells and bortezomib resulted in significantly greater cytotoxicity than γδ T cells alone, even at lower effector-to-target ratios. Based on the positive results against AML and the generalizable mechanism of this combination approach, it was also tested against T-cell acute lymphoblastic leukemia (T-ALL), another high-risk leukemia. Similarly, bortezomib increased ULBP 2/5/6 expression in T-ALL cell lines, Jurkat and MOLT-4 and improved the cytotoxicity of γδ T cells against each line. Collectively, these results show that bortezomib enhances γδ T-cell-mediated killing of both AML and T-ALL cells in part through increased NKG2D ligand-receptor interaction. Furthermore, proof-of-concept for the combination of ex vivo-expanded γδ T cells with stress ligand-inducing drugs as a therapeutic platform for high-risk leukemias is demonstrated.


Assuntos
Bortezomib/farmacologia , Citotoxicidade Imunológica , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Bortezomib/administração & dosagem , Linhagem Celular Tumoral , Humanos , Linfócitos Intraepiteliais/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteostase/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Regulação para Cima
16.
Leukemia ; 34(7): 1741-1750, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32060402

RESUMO

The rarity of mixed phenotype acute leukemia (MPAL) has precluded adequate data to incorporate minimal residual disease (MRD) monitoring into therapy. Fluidity in MPAL classification systems further complicates understanding its biology and outcomes; this includes uncertainty surrounding the impact of shifting diagnostic requirements even between iterations of the World Health Organization (WHO) classification. Our primary objective was to address these knowledge gaps. To do so, we analyzed clinicopathologic features, therapy, MRD, and survival in a centrally-reviewed, multicenter cohort of MPAL uniformly diagnosed by the WHO classification and treated with acute lymphoblastic leukemia (ALL) regimens. ALL induction therapy achieved an EOI MRD negative (<0.01%) remission in most patients (70%). EOI MRD positivity was predictive of 5-year EFS (HR = 6.00, p < 0.001) and OS (HR = 9.57, p = 0.003). Patients who cleared MRD by EOC had worse survival compared with those EOI MRD negative. In contrast to adults with MPAL, ALL therapy without transplantation was adequate to treat most pediatric patients. Earlier MRD clearance was associated with better treatment success and survival. Prospective trials are now necessary to validate and refine MRD thresholds within the pediatric MPAL population and to identify salvage strategies for those with poor predicted survival.


Assuntos
Transplante de Células-Tronco Hematopoéticas/mortalidade , Quimioterapia de Indução/mortalidade , Leucemia/mortalidade , Neoplasia Residual/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Criança , Estudos de Coortes , Feminino , Seguimentos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia/classificação , Leucemia/patologia , Leucemia/terapia , Masculino , Neoplasia Residual/epidemiologia , Neoplasia Residual/patologia , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Taxa de Sobrevida , Estados Unidos/epidemiologia
17.
J Hematol Oncol ; 12(1): 141, 2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884955

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has been successful in treating B cell malignancies in clinical trials; however, fewer studies have evaluated CAR T cell therapy for the treatment of T cell malignancies. There are many challenges in translating this therapy for T cell disease, including fratricide, T cell aplasia, and product contamination. To the best of our knowledge, no tumor-specific antigen has been identified with universal expression on cancerous T cells, hindering CAR T cell therapy for these malignancies. Numerous approaches have been assessed to address each of these challenges, such as (i) disrupting target antigen expression on CAR-modified T cells, (ii) targeting antigens with limited expression on T cells, and (iii) using third party donor cells that are either non-alloreactive or have been genome edited at the T cell receptor α constant (TRAC) locus. In this review, we discuss CAR approaches that have been explored both in preclinical and clinical studies targeting T cell antigens, as well as examine other potential strategies that can be used to successfully translate this therapy for T cell disease.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Linfoma de Células T/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Neoplasias Hematológicas/imunologia , Humanos , Linfoma de Células T/imunologia , Prognóstico , Linfócitos T/metabolismo , Linfócitos T/transplante
18.
Reports (MDPI) ; 2(3)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38370916

RESUMO

Lineage switch in acute leukemias is a well-reported occurrence; however, most of these cases involve a switch from either lymphoid to myeloid or myeloid to lymphoid lineage. Here, we report a case of a 14-year-old male with B-cell acute lymphoblastic leukemia (B-ALL) who initially responded well to standard chemotherapy but then later developed mixed phenotype acute leukemia (MPAL) at relapse, likely reflecting a clonal evolution of the original leukemia with a partial phenotypic shift. The patient had a del(9)(p13p21) in his leukemia blasts at diagnosis, and the deletion persisted at relapse along with multiple additional cytogenetic aberrations. Interestingly, the patient presented with an isolated testicular lesion at relapse, which on further analysis revealed both a lymphoid and myeloid component. Unfortunately, the patient did not respond well to treatment at relapse and eventually succumbed to his disease. To our knowledge, an isolated extramedullary MPAL at relapse in a patient with previously diagnosed B-ALL has not been reported in the literature before.

19.
Blood Adv ; 2(3): 210-223, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386194

RESUMO

Adoptive therapy with ex vivo-expanded genetically modified antigen-specific T cells can induce remissions in patients with relapsed/refractory cancer. The clinical success of this therapy depends upon efficient transduction and expansion of T cells ex vivo and their homing, persistence and cytotoxicity following reinfusion. Lower rates of ex vivo expansion and clinical response using anti-CD19 chimeric antigen receptor (CAR) T cells have been seen in heavily pretreated lymphoma patients compared with B-cell acute lymphoblastic leukemia patients and motivate the development of novel strategies to enhance ex vivo T cell expansion and their persistence in vivo. We demonstrate that inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ) and antagonism of vasoactive intestinal peptide (VIP) signaling partially inhibits the terminal differentiation of T cells during anti-CD3/CD28 bead-mediated expansion (mean, 54.4% CD27+CD28+ T cells vs 27.4% in control cultures; P < .05). This strategy results in a mean of 83.7% more T cells cultured from lymphoma patients in the presence of PI3Kδ and VIP antagonists, increased survival of human T cells from a lymphoma patient in a murine xenograft model, enhanced cytotoxic activity of antigen-specific human CAR T cells and murine T cells against lymphoma, and increased transduction and expansion of anti-CD5 human CAR T cells. PI3Kδ and VIP antagonist-expanded T cells from lymphoma patients show reduced terminal differentiation, enhanced polyfunctional cytokine expression, and preservation of costimulatory molecule expression. Taken together, synergistic blockade of these pathways is an attractive strategy to enhance the expansion and functional capacity of ex vivo-expanded cancer-specific T cells.


Assuntos
Técnicas de Cultura de Células/métodos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Linfócitos T/citologia , Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Adulto , Idoso , Animais , Senescência Celular/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Linfoma/terapia , Linfoma Difuso de Grandes Células B/terapia , Camundongos , Pessoa de Meia-Idade , Neurotensina/farmacologia , Purinas/farmacologia , Quinazolinonas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia
20.
Oncoimmunology ; 7(3): e1407898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399409

RESUMO

Relapsed T-cell malignancies have poor outcomes when treated with chemotherapy, but survival after allogeneic bone marrow transplantation (BMT) approaches 50%. A limitation to BMT is the difficulty of achieving remission prior to transplant. Chimeric antigen receptor (CAR) T-cell therapy has shown successes in B-cell malignancies. This approach is difficult to adapt for the treatment of T-cell disease due to lack of a T-lymphoblast specific antigen and the fratricide of CAR T cells that occurs with T-cell antigen targeting. To circumvent this problem two approaches were investigated. First, a natural killer (NK) cell line, which does not express CD5, was used for CAR expression. Second, CRISPR-Cas9 genome editing technology was used to knockout CD5 expression in CD5-positive Jurkat T cells and in primary T cells, allowing for the use of CD5-negative T cells for CAR expression. Two structurally distinct anti-CD5 sequences were also tested, i) a traditional immunoglobulin-based single chain variable fragment (scFv) and ii) a lamprey-derived variable lymphocyte receptor (VLR), which we previously showed can be used for CAR-based recognition. Our results show i) both CARs yield comparable T-cell activation and NK cell-based cytotoxicity when targeting CD5-positive cells, ii) CD5-edited CAR-modified Jurkat T cells have reduced self-activation compared to that of CD5-positive CAR-modified T cells, iii) CD5-edited CAR-modified Jurkat T cells have increased activation in the presence of CD5-positive target cells compared to that of CD5-positive CAR-modified T cells, and iv) although modest effects were seen, a mouse model using the CAR-expressing NK cell line showed the scFv-CAR was superior to the VLR-CAR in delaying disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA