Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Intervalo de ano de publicação
3.
Plant Cell ; 32(7): 2141-2157, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327535

RESUMO

Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Celulose/biossíntese , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Glucosiltransferases/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Mutação , Plantas Geneticamente Modificadas , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 116(42): 21291-21301, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570580

RESUMO

Vacuoles are essential organelles in plants, playing crucial roles, such as cellular material degradation, ion and metabolite storage, and turgor maintenance. Vacuoles receive material via the endocytic, secretory, and autophagic pathways. Membrane fusion is the last step during which prevacuolar compartments (PVCs) and autophagosomes fuse with the vacuole membrane (tonoplast) to deliver cargoes. Protein components of the canonical intracellular fusion machinery that are conserved across organisms, including Arabidopsis thaliana, include complexes, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), that catalyze membrane fusion, and homotypic fusion and vacuole protein sorting (HOPS), that serve as adaptors which tether cargo vesicles to target membranes for fusion under the regulation of RAB-GTPases. The mechanisms regulating the recruitment and assembly of tethering complexes are not well-understood, especially the role of RABs in this dynamic regulation. Here, we report the identification of the small synthetic molecule Endosidin17 (ES17), which interferes with synthetic, endocytic, and autophagic traffic by impairing the fusion of late endosome compartments with the tonoplast. Multiple independent target identification techniques revealed that ES17 targets the VPS35 subunit of the retromer tethering complex, preventing its normal interaction with the Arabidopsis RAB7 homolog RABG3f. ES17 interference with VPS35-RABG3f interaction prevents the retromer complex to endosome anchoring, resulting in retention of RABG3f. Using multiple approaches, we show that VPS35-RABG3f-GTP interaction is necessary to trigger downstream events like HOPS complex assembly and fusion of late compartments with the tonoplast. Overall, our results support a role for the interaction of RABG3f-VPS35 as a checkpoint in the control of traffic toward the vacuole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo
5.
J Exp Bot ; 69(1): 39-46, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-28992077

RESUMO

The endomembrane trafficking network is highly complex and dynamic, with both conventional and so-called unconventional routes which are in essence recently discovered pathways that are poorly understood in plants. One approach to dissecting endomembrane pathways that we have pioneered is the use of chemical biology. Classical genetic manipulations often deal with indirect pleiotropic phenotypes resulting from the perturbation of key players of the trafficking routes. Many of these difficulties can be circumvented using small molecules to modify or disrupt the function or localization of key proteins regulating these pathways. In this review, we summarize how small molecules have been used as probes to define these pathways, and how they could be used to increase current knowledge of unconventional protein secretion pathways.


Assuntos
Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Via Secretória , Transporte Proteico
6.
Plant Cell ; 29(1): 90-108, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011692

RESUMO

The endomembrane system is an interconnected network required to establish signal transduction, cell polarity, and cell shape in response to developmental or environmental stimuli. In the model plant Arabidopsis thaliana, there are numerous markers to visualize polarly localized plasma membrane proteins utilizing endomembrane trafficking. Previous studies have shown that the large ARF-GEF GNOM plays a key role in the establishment of basal (rootward) polarity, whereas the apically (shootward) polarized membrane proteins undergo sorting via different routes. However, the mechanism that maintains apical polarity is largely unknown. Here, we used a chemical genomic approach and identified the compound endosidin 16 (ES16), which perturbed apically localized plasma membrane proteins without affecting basal polarity. We demonstrated that ES16 is an inhibitor for recycling of apical, lateral, and nonpolar plasma membrane proteins as well as biosynthetic secretion, leaving the basal proteins as the only exceptions not subject to ES16 inhibition. Further evidence from pharmaceutical and genetic data revealed that ES16 effects are mediated through the regulation of small GTPase RabA proteins and that RabA GTPases work in concert with the BIG clade ARF-GEF to modulate the nonbasal trafficking. Our results reveal that ES16 defines a distinct pathway for endomembrane sorting routes and is essential for the establishment of cell polarity.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/ultraestrutura , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
7.
Annu Rev Plant Biol ; 68: 1-27, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27860488

RESUMO

I was a budding pianist immersed in music in Leningrad, in the Soviet Union (now Saint Petersburg, Russia), when I started over, giving up sheet music for the study of ciliates. In a second starting-over story, I emigrated to the United States, where I switched to studying carbohydrate-binding plant lectin proteins, dissecting plant vesicular trafficking, and isolating novel glycosyltransferases responsible for making cell wall polysaccharides. I track my journey as a plant biologist from student to principal investigator to founding director of the Center for Plant Cell Biology and then director of the Institute for Integrative Genome Biology at the University of California, Riverside. I discuss implementing a new vision as the first and (so far) only female editor in chief of Plant Physiology, as well as how my laboratory helped develop chemical genomics tools to study the functions of essential plant proteins. Always wanting to give back what I received, I discuss my present efforts to develop female scientist leadership in Chinese universities and a constant theme throughout my life: a love of art and travel.


Assuntos
Botânica/história , Genômica , História do Século XX , U.R.S.S. , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 113(1): E41-50, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26607451

RESUMO

The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Exocitose , Limoninas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Estrutura Secundária de Proteína
9.
Biol Res ; 48: 39, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26209329

RESUMO

BACKGROUND: A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS: A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS: Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.


Assuntos
Alcanossulfonatos/farmacologia , Endocitose/fisiologia , Proteínas de Plantas/fisiologia , Transporte Proteico , Rodanina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Fenótipo , Transporte Proteico/genética , Rodanina/farmacologia , Via Secretória , Vacúolos/fisiologia
10.
Proc Natl Acad Sci U S A ; 112(7): E806-15, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646449

RESUMO

Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Endocitose , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico
11.
Plants (Basel) ; 4(2): 320-33, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-27135331

RESUMO

The vacuole is an essential organelle for plant growth and development. It is the location for the storage of nutrients; such as sugars and proteins; and other metabolic products. Understanding the mechanisms of vacuolar trafficking and molecule transport across the vacuolar membrane is of great importance in understanding basic plant development and cell biology and for crop quality improvement. Proteins play important roles in vacuolar trafficking; such proteins include Rab GTPase signaling proteins; cargo recognition receptors; and SNAREs (Soluble NSF Attachment Protein Receptors) that are involved in membrane fusion. Some vacuole membrane proteins also serve as the transporters or channels for transport across the tonoplast. Less understood but critical are the roles of lipids in vacuolar trafficking. In this review, we will first summarize molecular composition of plant vacuoles and we will then discuss our latest understanding on the role of lipids in plant vacuolar trafficking and a surprising connection to ribosome function through the study of ribosomal mutants.

12.
Proc Natl Acad Sci U S A ; 112(1): E89-98, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535344

RESUMO

The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Proteínas Ribossômicas/metabolismo , Vacúolos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Teste de Complementação Genética , Ácidos Indolacéticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Meristema/efeitos dos fármacos , Meristema/metabolismo , Modelos Biológicos , Mutação , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Proteínas Ribossômicas/genética , Vacúolos/efeitos dos fármacos
13.
Biol. Res ; 48: 1-11, 2015. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950803

RESUMO

BACKGROUND: A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS: A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS: Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.


Assuntos
Proteínas de Plantas/fisiologia , Rodanina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Alcanossulfonatos/farmacologia , Transporte Proteico/genética , Endocitose/fisiologia , Fenótipo , Rodanina/farmacologia , Vacúolos/fisiologia , Transporte Biológico , Via Secretória
14.
Front Plant Sci ; 5: 476, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309565

RESUMO

Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking.

15.
Front Plant Sci ; 5: 455, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250041

RESUMO

As an early adopter of plant chemical genetics to the study of endomembrane trafficking, we have observed the growth of small molecule approaches. Within the field, we often describe the strengths of the approach in a broad, generic manner, such as the ability to address redundancy and lethality. But, we are now in a much better position to evaluate the demonstrated value of the approach based on examples. In this perspective, we offer an assessment of chemical genetics in plants and where its applications may be of particular utility from the perspective of the cell biologist. Beyond this, we suggest areas to be addressed to provide broader access and enhance the effectiveness of small molecule approaches in plant biology.

16.
Methods Mol Biol ; 1056: 111-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24306867

RESUMO

Endomembrane cycling processes in plants remain mostly intractable through classical genetic interrogation. Chemical disruption of these processes provides an opportunity to slow or inhibit these processes for study. Tobacco pollen, which is dependent upon endomembrane cycling for tube growth, provides a plant system that is amenable to high-throughput screening of chemical disruptors. We describe here the process that allowed the identification of over 360 endomembrane cycling disruptors.


Assuntos
Membrana Celular/metabolismo , Nicotiana/efeitos dos fármacos , Pólen/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Técnicas de Cultura , Germinação , Ensaios de Triagem em Larga Escala , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Bibliotecas de Moléculas Pequenas , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
17.
Methods Mol Biol ; 1056: 225-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24306877

RESUMO

Metabolomics and chemical genomics studies can each provide unique insights into plant biology. Although a variety of analytical techniques can be used for the interrogation of plant systems, nuclear magnetic resonance (NMR) provides unbiased characterization of abundant metabolites. An example methodology is provided for probing the metabolism of Arabidopsis thaliana in a chemical genomics experiment including methods for tissue treatment, tissue collection, metabolite extraction, and methods to minimize variance in biological and technical sample replicates. Additionally, considerations and methods for data analysis, including multivariate statistics, univariate statistics, and data interpretation are included. The process is illustrated by examining the metabolic effects of chemical treatment of Arabidopsis with Sortin 1, also known as vacuolar protein sorting inhibitor 1. Sortin 1 was applied to Arabidopsis seedlings to examine metabolic effects in a chemical genomics experiment and to demonstrate the utility of metabolomics in conjunction with other "omics" techniques.


Assuntos
Plântula/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Interpretação Estatística de Dados , Genoma de Planta , Genômica , Indenos/farmacologia , Espectroscopia de Ressonância Magnética , Metabolômica , Análise Multivariada , Análise de Componente Principal , Transporte Proteico , Piridinas/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo
18.
Dev Cell ; 24(6): 569-71, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23537629

RESUMO

The role, if any, of microtubules in auxin transport is poorly understood in plant biology. In this issue of Developmental Cell, Ambrose et al. (2013) show that the microtubule binding protein CLASP regulates PIN2 auxin transporter trafficking and stability via Sorting Nexin1, a component of the retromer complex.

19.
Mol Plant ; 6(4): 1202-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23118478

RESUMO

Tip growth of pollen tubes and root hairs occurs via rapid polar growth. These rapidly elongating cells require tip-focused endomembrane trafficking for the deposition and recycling of proteins, membranes, and cell wall materials. Most of the image-based data published to date are subjective and non-quantified. Quantitative and comparative descriptors of these highly dynamic processes have been a major challenge, but are highly desirable for genetic and chemical genomics approaches to dissect this biological network. To address this problem, we screened for small molecules that perturbed the localization of a marker for the Golgi Ras-like monomeric G-protein RAB2:GFP expressed in transgenic tobacco pollen. Semi-automated high-throughput imaging and image analysis resulted in the identification of novel compounds that altered pollen tube development and endomembrane trafficking. Six compounds that caused mislocalization and varying degrees of altered movement of RAB2:GFP-labeled endomembrane bodies were used to generate a training set of image data from which to quantify vesicle dynamics. The area, velocity, straightness, and intensity of each body were quantified using semi-automated image analysis tools revealing quantitative differences in the phenotype caused by each compound. A score was then given to each compound enabling quantitative comparisons between compounds. Our results demonstrate that image analysis can be used to quantitatively evaluate dynamic subcellular endomembrane phenotypes induced by bioactive chemicals, mutations, or other perturbing agents as part of a strategy to quantitatively dissect the endomembrane network.


Assuntos
Membranas Intracelulares/metabolismo , Pólen/citologia , Transporte Biológico , Genômica , Espaço Intracelular/metabolismo , Imagem Molecular , Especificidade de Órgãos , Fenótipo , Proteína rab2 de Ligação ao GTP/metabolismo
20.
Proc Natl Acad Sci U S A ; 109(48): 19537-44, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23144218

RESUMO

Upstream ORFs are elements found in the 5'-leader sequences of specific mRNAs that modulate the translation of downstream ORFs encoding major gene products. In Arabidopsis, the translational control of auxin response factors (ARFs) by upstream ORFs has been proposed as a regulatory mechanism required to respond properly to complex auxin-signaling inputs. In this study, we identify and characterize the aberrant auxin responses in specific ribosomal protein mutants in which multiple ARF transcription factors are simultaneously repressed at the translational level. This characteristic lends itself to the use of these mutants as genetic tools to bypass the genetic redundancy among members of the ARF family in Arabidopsis. Using this approach, we were able to assign unique functions for ARF2, ARF3, and ARF6 in plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/fisiologia , Fases de Leitura Aberta , Transporte Proteico , Transdução de Sinais , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA