Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1175926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292200

RESUMO

Introduction: Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown. Method: Pregnant mice were administered PEGylated (PEG)IL11 or control (PEG) from embryonic day (E)10-16 and the effect on inflammasome activation, systolic blood pressure (during gestation and at 50/90 days post-natal), placental development, and fetal/post-natal pup growth measured. RNAseq analysis was performed on E13 placenta. Human 1st trimester placental villi were treated with IL11 and the effect on inflammasome activation and pyroptosis identified by immunohistochemistry and ELISA. Result: PEGIL11 activated the placental inflammasome causing inflammation, fibrosis, and acute and chronic hypertension in wild-type mice. Global and placental-specific loss of the inflammasome adaptor protein Asc and global loss of the Nlrp3 sensor protein prevented PEGIL11-induced fibrosis and hypertension in mice but did not prevent PEGIL11-induced fetal growth restriction or stillbirths. RNA-sequencing and histology identified that PEGIL11 inhibited trophoblast differentiation towards spongiotrophoblast and syncytiotrophoblast lineages in mice and extravillous trophoblast lineages in human placental villi. Discussion: Inhibition of ASC/NLRP3 inflammasome activity could prevent IL11-induced inflammation and fibrosis in various disease states including preeclampsia.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Inflamassomos/metabolismo , Interleucina-11/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pré-Eclâmpsia/metabolismo , Retardo do Crescimento Fetal/metabolismo , Placentação , Inflamação/metabolismo , Fibrose
2.
Endocrinology ; 155(3): 1131-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424039

RESUMO

The blood-testis barrier (BTB) sequesters meiotic spermatocytes and differentiating spermatids away from the vascular environment. We aimed to assess whether meiosis and postmeiotic differentiation could occur when the BTB is permeable. Using a model of meiotic suppression and reinitiation, BTB function was assessed using permeability tracers of small, medium, and large (0.6-, 70-, and 150-kDa) sizes to emulate blood- and lymphatic-borne factors that could cross the BTB. Adult rats (n = 9/group) received the GnRH antagonist acyline (10 wk) to suppress gonadotropins, followed by testosterone (24cm Silastic implant), for 2, 4, 7, 10, 15, and 35 days. In acyline-suppressed testes, all tracers permeated the seminiferous epithelium. As spermatocytes up to diplotene stage XIII reappeared, both the 0.6- and 70-kDa tracers, but not 150 kDa, permeated around these cells. Intriguingly, the 0.6- and 70-kDa tracers were excluded from pachytene spermatocytes at stages VII and VIII but not in subsequent stages. The BTB became progressively impermeable to the 0.6- and 70-kDa tracers as stages IV-VII round spermatids reappeared in the epithelium. This coincided with the appearance of the tight junction protein, claudin-12, in Sertoli cells and at the BTB. We conclude that meiosis can occur when the BTB is permeable to factors up to 70 kDa during the reinitiation of spermatogenesis. Moreover, BTB closure corresponds with the presence of particular pachytene spermatocytes and round spermatids. This research has implications for understanding the effects of BTB dynamics in normal spermatogenesis and also potentially in states where spermatogenesis is suppressed, such as male hormonal contraception or infertility.


Assuntos
Barreira Hematotesticular/fisiologia , Espermatogênese , Animais , Claudinas/metabolismo , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Microscopia de Fluorescência , Oligopeptídeos/metabolismo , Tamanho do Órgão , Permeabilidade , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/metabolismo , Espermátides/citologia , Espermatócitos/citologia , Testículo/metabolismo , Junções Íntimas , Fatores de Tempo
3.
Mol Cell Endocrinol ; 377(1-2): 33-43, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23831638

RESUMO

From puberty and throughout adult spermatogenesis, retinoid signalling is essential for germ cell differentiation and male fertility. The initiation of spermatogonial differentiation and germ cell meiosis occurs under the direction of local retinoid signalling in the testis, and corresponds with the final phase of somatic Sertoli cell differentiation at puberty. Here, we consider the cellular and molecular basis of retinoid actions upon Sertoli cell differentiation. Primary rat Sertoli cells were isolated during the pubertal proliferative and quiescent phases at postnatal days 10- and 20- respectively, and cultured with all-trans-retinoic acid. We show that retinoid signalling can potently suppress activin-induced proliferation by antagonising G1 phase progression and entry into the cell cycle. Retinoid signalling was also found to initiate tight junction formation in primary Sertoli cells, consistent with a pro-differentiative role. This study implicates retinoid signalling in the differentiation of both somatic and germ cells in the testis at puberty.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células de Sertoli/citologia , Tretinoína/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
4.
Spermatogenesis ; 2(4): 279-284, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23248769

RESUMO

Primary cell culture is an established and widely used technique to study Sertoli cell function in vitro. However, the relative difficulty of stably overexpressing or knocking down genes in Sertoli cell culture has limited progress in the field. In this technical report, we present a method to transduce 20 dpp rat Sertoli cell cultures with VSV-G pseudotyped lentiviral based vectors at a high rate (~80%), with stable reporter gene expression. Although high transgene expression is desirable, it was noted that at transduction rates > 60% inter-Sertoli cell tight junction integrity and, hence, Sertoli cell function, were transiently compromised. We envisage that this optimized procedure has the potential to stimulate Sertoli cell research, and motivate the use of Sertoli cells in various cell therapy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA