Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(29): E5995-E6004, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673986

RESUMO

The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Citocininas/genética , Citocininas/farmacologia , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
BMC Plant Biol ; 16(1): 260, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931185

RESUMO

BACKGROUND: Cytokinin activates transcriptional cascades important for development and the responses to biotic and abiotic stresses. Most of what is known regarding cytokinin-regulated gene expression comes from studies of the dicotyledonous plant Arabidopsis thaliana. To expand the understanding of the cytokinin-regulated transcriptome, we employed RNA-Seq to analyze gene expression in response to cytokinin in roots and shoots of the monocotyledonous plant rice. RESULTS: We identified over 4,600 and approximately 2,400 genes differentially expressed in response to cytokinin in roots and shoots respectively. There were some similarities in the sets of cytokinin-regulated genes identified in rice and Arabidopsis, including an up-regulation of genes that act to reduce cytokinin function. Consistent with this, we found that the preferred DNA-binding motif of a rice type-B response regulator is similar to those from Arabidopsis. Analysis of the genes regulated by cytokinin in rice revealed a large number of transcription factors, receptor-like kinases, and genes involved in protein degradation, as well as genes involved in development and the response to biotic stress. Consistent with the over-representation of genes involved in biotic stress, there is a substantial overlap in the genes regulated by cytokinin and those differentially expressed in response to pathogen infection, suggesting that cytokinin plays an integral role in the transcriptional response to pathogens in rice, including the induction of a large number of WRKY transcription factors. CONCLUSIONS: These results begin to unravel the complex gene regulation after cytokinin perception in a crop of agricultural importance and provide insight into the processes and responses modulated by cytokinin in monocots.


Assuntos
Citocininas/farmacologia , Oryza/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo
3.
Plant J ; 85(1): 134-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26662515

RESUMO

The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Curr Opin Plant Biol ; 13(5): 533-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20851038

RESUMO

The cytokinin signaling pathway consists of a phosphorelay mechanism that is initiated by binding of cytokinin to histidine kinase receptors and culminates with the transcription of cytokinin-responsive genes in the nucleus. Type-B response regulators (ARR) encode transcription factors that act as major players in the transcriptional activation of cytokinin-responsive genes, among which are many transcription factors. In this review, we highlight the transcriptional networks regulated by cytokinin that have been identified and their roles in the regulation of a subset of the many developmental and physiological processes regulated by this plant hormone.


Assuntos
Citocininas/metabolismo , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Luz , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA