Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(12): e202303957, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051591

RESUMO

The reaction of a nickel(II) chloride complex containing a tridentate ß-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.

2.
Chem Sci ; 14(22): 5894-5898, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293651

RESUMO

Despite recent advancements in the chemistry of multiply bound boron compounds, the laboratory isolation of the parent oxoborane moiety, HBO has long remained an unsolved and well-recognized challenge. The reaction of 6-SIDipp·BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl)tetrahydropyrimidine-2-ylidene] with GaCl3 afforded an unusual boron-gallium 3c-2e compound (1). The addition of water to 1 resulted in the release of H2 and the formation of a rare acid stabilized neutral parent oxoborane, LB(H)[double bond, length as m-dash]O (2). Crystallographic and density functional theory (DFT) analyses support the presence of a terminal B[double bond, length as m-dash]O double bond. Subsequent addition of another equivalent of water molecule led to hydrolysis of the B-H bond to the B-OH bond, but the 'B[double bond, length as m-dash]O' moiety remained intact, resulting in the formation of the hydroxy oxoborane compound (3), which can be classified as a monomeric form of metaboric acid.

3.
Chem Commun (Camb) ; 59(12): 1669-1672, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689219

RESUMO

The reaction of PhC(NtBu)2SiSi(SiMe3)3 (1) with Me3SiCH2Cl afforded an unsymmetrical sp2-sp3 disilene, 2, with concomitant elimination of Me3SiCl. The analogous reaction with PhC(NtBu)2SiCl resulted in the oxidative addition of the C-Cl bond at the Si(II) atom (3). The reactions of 2 with sulfur and selenium led to compounds with SiE (ES (4) and Se (5)) double bonds. Tellurium reacted differently with 2 and furnished a zwitterionic compound, 6.

4.
Chem Commun (Camb) ; 58(23): 3783-3786, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35229841

RESUMO

Herein, we have undertaken the synthesis and investigated the reactivity of a 6-membered saturated NHC borane adduct (1). Direct electrophilic halogenation of 1 with a stoichiometric amount of I2 led to NHC boryl iodides, 6-SIDipp·BH2I (2) and 6-SIDipp·BHI2 (3), which were further reacted with various nucleophiles to give novel 6-SIDipp based mono and disubstituted boranes with OTf (4 and 6) or ONO2 (5 and 7) functional groups. The addition of Br2/H2O to 1 smoothly results in a dihydroxyborenium cation (8).

5.
Inorg Chem ; 60(3): 1654-1663, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461294

RESUMO

The recently reported hypersilylsilylene PhC(NtBu)2SiSi(SiMe3)3 (1) reacts with BH3, 9-BBN, and PhBCl2 to yield the respective Lewis acid base adducts 2-4, respectively. Compound 4 undergoes isomerization to form a ring expansion product 5. The same silylene was found to initially form an adduct with HBpin (6) and subsequently isomerized to 7 via the rupture of the B-H bond of HBpin (7), where the hydride was bound to the carbon atom of the amidinate ligand and the Bpin unit was attached to the silicon center. Surprisingly, the reaction of 1 with HBcat results in PhC(NtBu)2Bcat (8). Subsequently, we have shown that HBcat forms the same product when it reacts with related silylene PhC(NtBu)2SiN(SiMe3)3 (1'). With all of these reactions in hand, we ponder if silylene can activate two small molecules at one time. In this work, we delineate the three-component reactions of silylenes 1 and 1' with 4-fluorobenzaldehyde and HBpin, which afforded unusual coupling products, 9 and 10, respectively. Note that 9 and 10 were prepared from the cleavage of the B-H and C═O bonds by silylene in a single reaction and are the first structurally attested Si-C-O-B coupled products.

6.
J Am Chem Soc ; 141(38): 14950-14954, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31510740

RESUMO

Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials. Even though proton carrier loaded crystalline porous organic frameworks have been used for proton-conduction, the weak host-guest interactions limited their practical use. Herein, we developed a crystalline 2D-polymer composed of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium. The imidazole linked-2D-polymer exhibits ultrahigh proton conductivity (3.2 × 10-2 S cm-1) (at 95% relative humidity and 95 °C) in the pristine state, which is highest among the undoped porous organic frameworks so far reported. The present strategy of a crystalline proton-conducting 2D-polymer will lead to the development of new high performing crystalline solid proton conductor.

7.
Chem Commun (Camb) ; 55(24): 3536-3539, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30839989

RESUMO

The addition of HBpin to PhC(NtBu)2SiN(SiMe3)2 (1) results in the cleavage of the B-H bond in a cooperative fashion across the Si and amidinate-C sites. The reaction of 1 with benzaldehyde led to C-H bond activation with amidinate ring expansion leading to a five-membered heterocycle. In case of 4-fluorobenzaldehyde, a C-C bond coupling takes place leading to a dioxasilolane derivative as the major product.

8.
J Am Chem Soc ; 140(12): 4430-4439, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29526081

RESUMO

Earth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions. This protocol operates at 10-30 bar syngas pressure below 100 °C, utilizes readily available ligands, and applies to an array of olefins. Thus, the iron precursor [HFe(CO)4]-[Ph3PNPPh3]+ (1) in the presence of triphenyl phosphine catalyzes the hydroformylation of 1-hexene (S2), 1-octene (S1), 1-decene (S3), 1-dodecene (S4), 1-octadecene (S5), trimethoxy(vinyl)silane (S6), trimethyl(vinyl)silane (S7), cardanol (S8), 2,3-dihydrofuran (S9), allyl malonic acid (S10), styrene (S11), 4-methylstyrene (S12), 4- iBu-styrene (S13), 4- tBu-styrene (S14), 4-methoxy styrene (S15), 4-acetoxy styrene (S16), 4-bromo styrene (S17), 4-chloro styrene (S18), 4-vinylbenzonitrile (S19), 4-vinylbenzoic acid (S20), and allyl benzene (S21) to corresponding aldehydes in good to excellent yields. Both electron donating and electron withdrawing substituents could be tolerated and excellent conversions were obtained for S11-S20. Remarkably, the addition of 1 mol % acetic acid promotes the reaction to completion within 16-24 h. Detailed mechanistic investigations revealed in situ formation of an iron-dihydride complex [H2Fe(CO)2(PPh3)2] (A) as an active catalytic species. This finding was further supported by cyclic voltammetry investigations and intermediacy of an Fe(0)-Fe(II) species was established. Combined experimental and computational investigations support the existence of an iron-dihydride as the catalyst resting state, which then follows a Fe(II) based catalytic cycle to produce aldehyde.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA