Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(1): 367-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37875652

RESUMO

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Ratos , Camundongos , Animais , Suínos , Envelhecimento/fisiologia , Biomarcadores , Plasma , Imunoglobulina G
2.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609328

RESUMO

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.

3.
Geroscience ; 45(6): 3187-3209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493860

RESUMO

Age and sex have a profound effect on cytosine methylation levels in humans and many other species. Here we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R = 0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. Using the primate data, we characterize the effect of age and sex on individual cytosines in highly conserved regions. We identify 11 sex-related CpGs on autosomes near genes (POU3F2, CDYL, MYCL, FBXL4, ZC3H10, ZXDC, RRAS, FAM217A, RBM39, GRIA2, UHRF2). Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers of aging for all primates.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Macaca mulatta/genética , Envelhecimento/genética , Papio , Ubiquitina-Proteína Ligases , Proteínas de Transporte
4.
Sci Rep ; 12(1): 9465, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676302

RESUMO

Evidence suggests that exposure to UV-A radiation can liberate nitric oxide from skin cells eliciting vasodilation in-vivo. However, the duration of nitric oxide release in skin cells after UV exposure is not well studied, with emphasis on UV-B mediated iNOS upregulation. The current study demonstrated persistence of nitric oxide release in a dark reaction after moderate UV-A exposure, peaking around 48 h post exposure; this effect was shown in keratinocytes, fibroblasts and endothelial cells from neonatal donors and keratinocytes from aged donors and confirmed the hypothesis that UV-A exposure appeared to upregulate cNOS alongside iNOS. Release of nitric oxide in the skin cells induced by a moderate exposure to UV-A in sunlight may be especially beneficial for some demographic groups such as the elderly, hypertensive patients or those with impaired nitric oxide function, not only during exposure but many hours and days after that.


Assuntos
Óxido Nítrico Sintase , Óxido Nítrico , Idoso , Células Endoteliais/metabolismo , Humanos , Recém-Nascido , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pele/metabolismo , Raios Ultravioleta , Regulação para Cima
5.
Proc Natl Acad Sci U S A ; 119(21): e2120887119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580182

RESUMO

DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human­dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Animais , DNA , Metilação de DNA/genética , Cães , Epigenômica , Humanos
6.
STAR Protoc ; 3(2): 101378, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35586317

RESUMO

We have developed a technique to isolate primary keratinocytes, melanocytes, fibroblasts, preadipocytes, and microvascular endothelial cells from an individual sample of human skin. The protocol describes step-by-step instructions for processing, cells isolation, and culture of neonatal foreskin, with adaptation for more demanding adult tissues. The availability of multiple isogenic cell types derived from individual skin samples offers the ability to investigate various areas of biology, in the context of cell-type specificity without potential confounding influence of inter-individual or genetic differences. For complete details on the use and execution of this protocol, please refer to Holliman et al. (2017), Horvath et al. (2019), Horvath et al. (2018), Kabacik et al. (2018), Lowe et al. (2020), Lu et al. (2019), and Lu et al. (2018).


Assuntos
Células Endoteliais , Pele , Separação Celular/métodos , Humanos , Recém-Nascido , Queratinócitos , Melanócitos
7.
Nat Aging ; 2(1): 46-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35368774

RESUMO

Naked mole rats (NMRs) live an exceptionally long life, appear not to exhibit age-related decline in physiological capacity and are resistant to age-related diseases. However, it has been unknown whether NMRs also evade aging according to a primary hallmark of aging: epigenetic changes. To address this question, we profiled n = 385 samples from 11 tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). We observed strong epigenetic aging effects and developed seven highly accurate epigenetic clocks for several tissues (pan-tissue, blood, kidney, liver, skin clocks) and two dual-species (human-NMR) clocks. The skin clock correctly estimated induced pluripotent stem cells derived from NMR fibroblasts to be of prenatal age. The NMR epigenetic clocks revealed that breeding NMR queens age more slowly than nonbreeders, a feature that is also observed in some eusocial insects. Our results show that despite a phenotype of negligible senescence, the NMR ages epigenetically.


Assuntos
Metilação de DNA , Carrapatos , Animais , Humanos , Metilação de DNA/genética , Envelhecimento/genética , Epigênese Genética , Ratos-Toupeira/genética
8.
Geroscience ; 44(3): 1825-1845, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35449380

RESUMO

The opossum (Monodelphis domestica), with its sequenced genome, ease of laboratory care and experimental manipulation, and unique biology, is the most used laboratory marsupial. Using the mammalian methylation array, we generated DNA methylation data from n = 100 opossum samples from the ear, liver, and tail. We contrasted postnatal development and later aging effects in the opossum methylome with those in mouse (Mus musculus, C57BL/6 J strain) and other marsupial species such as Tasmanian devil, kangaroos, and wallabies. While the opossum methylome is similar to that of mouse during postnatal development, it is distinct from that shared by other mammals when it comes to the age-related gain of methylation at target sites of polycomb repressive complex 2. Our immunohistochemical staining results provide additional support for the hypothesis that PRC2 activity increases with later aging in mouse tissues but remains constant in opossum tissues. We present several epigenetic clocks for opossums that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (opossum and human). Two dual-species human-opossum pan-tissue clocks accurately measure chronological age and relative age, respectively. The human-opossum epigenetic clocks are expected to provide a significant boost to the attractiveness of opossum as a biological model. Additional epigenetic clocks for Tasmanian devil, red kangaroos and other species of the genus Macropus may aid species conservation efforts.


Assuntos
Metilação de DNA , Macropodidae , Animais , Epigênese Genética , Epigenômica , Macropodidae/genética , Camundongos , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 13(1): 40, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013267

RESUMO

Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy's zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.


Assuntos
Envelhecimento/genética , Metilação de DNA , Cavalos/genética , Transcriptoma , Animais , Sangue , Epigênese Genética , Epigenômica , Equidae/genética , Técnicas Genéticas , Humanos , Fígado
10.
Nat Aging ; 2(6): 484-493, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37034474

RESUMO

Epigenetic clocks are mathematically derived age estimators that are based on combinations of methylation values that change with age at specific CpGs in the genome. These clocks are widely used to measure the age of tissues and cells1,2. The discrepancy between epigenetic age (EpiAge), as estimated by these clocks, and chronological age is referred to as EpiAge acceleration. Epidemiological studies have linked EpiAge acceleration to a wide variety of pathologies, health states, lifestyle, mental state and environmental factors2, indicating that epigenetic clocks tap into critical biological processes that are involved in aging. Despite the importance of this inference, the mechanisms underpinning these clocks remained largely uncharacterized and unelucidated. Here, using primary human cells, we set out to investigate whether epigenetic aging is the manifestation of one or more of the aging hallmarks previously identified3. We show that although epigenetic aging is distinct from cellular senescence, telomere attrition and genomic instability, it is associated with nutrient sensing, mitochondrial activity and stem cell composition.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Metilação de DNA/genética , Envelhecimento/genética , Senescência Celular/genética , Epigenômica
11.
Geroscience ; 43(5): 2467-2483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523051

RESUMO

DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age, epigenetic clocks, for many species. Using a custom methylation array, we generated DNA methylation data from n = 238 porcine tissues including blood, bladder, frontal cortex, kidney, liver, and lung, from domestic pigs (Sus scrofa domesticus) and minipigs (Wisconsin Miniature Swine™). Samples used in this study originated from Large White X Landrace crossbred pigs, Large White X Minnesota minipig crossbred pigs, and Wisconsin Miniature Swine™. We present 4 epigenetic clocks for pigs that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (pig and human). Two dual-species human-pig pan-tissue clocks accurately measure chronological age and relative age, respectively. We also characterized CpGs that differ between minipigs and domestic pigs. Strikingly, several genes implicated by our epigenetic studies of minipig status overlap with genes (ADCY3, TFAP2B, SKOR1, and GPR61) implicated by genetic studies of body mass index in humans. In addition, CpGs with different levels of methylation between the two pig breeds were identified proximal to genes involved in blood LDL levels and cholesterol synthesis, of particular interest given the minipig's increased susceptibility to cardiovascular disease compared to domestic pigs. Thus, breed-specific differences of domestic and minipigs may potentially help to identify biological mechanisms underlying weight gain and aging-associated diseases. Our porcine clocks are expected to be useful for elucidating the role of epigenetics in aging and obesity, and the testing of anti-aging interventions.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Animais , Obesidade , Suínos/genética , Porco Miniatura
12.
Geroscience ; 43(5): 2441-2453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487267

RESUMO

Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.


Assuntos
Metilação de DNA , Epigênese Genética , Macaca mulatta , Envelhecimento , Animais , Chlorocebus aethiops , Epigenômica , Macaca mulatta/genética , Regiões Promotoras Genéticas
13.
Geroscience ; 43(5): 2413-2425, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482522

RESUMO

Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.


Assuntos
Callithrix , Metilação de DNA , Animais , Chlorocebus aethiops , Epigênese Genética , Macaca mulatta , Camundongos , Sirolimo/farmacologia
14.
Geroscience ; 43(5): 2363-2378, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463900

RESUMO

Human DNA methylation profiles have been used successfully to develop highly accurate biomarkers of aging ("epigenetic clocks"). Although these human epigenetic clocks are not immediately applicable to all species of the animal kingdom, the principles underpinning them appear to be conserved even in animals that are evolutionarily far removed from humans. This is exemplified by recent development of epigenetic clocks for mice and other mammalian species. Here, we describe epigenetic clocks for the domestic cat (Felis catus), based on methylation profiles of CpGs with flanking DNA sequences that are highly conserved between multiple mammalian species. Methylation levels of these CpGs are measured using a custom-designed Infinium array (HorvathMammalMethylChip40). From these, we present 3 epigenetic clocks for cats; of which, one applies only to blood samples from cats, while the remaining two dual-species human-cat clocks apply both to cats and humans. We demonstrate that these domestic cat clocks also lead to high age correlations in cheetahs, tigers, and lions. It is expected that these epigenetic clocks for cats possess the potential to be further developed for monitoring feline health as well as being used for identifying and validating anti-aging interventions.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento , Animais , Biomarcadores , Gatos , Epigenômica , Camundongos
15.
Aging Cell ; 20(7): e13414, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118182

RESUMO

Age-associated DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age ("epigenetic clocks") in humans, mice, dogs, and other species. Here we present epigenetic clocks for African and Asian elephants. These clocks were developed using novel DNA methylation profiles of 140 elephant blood samples of known age, at loci that are highly conserved between mammalian species, using a custom Infinium array (HorvathMammalMethylChip40). We present epigenetic clocks for Asian elephants (Elephas maximus), African elephants (Loxodonta africana), and both elephant species combined. Two additional human-elephant clocks were constructed by combining human and elephant samples. Epigenome-wide association studies identified elephant age-related CpGs and their proximal genes. The products of these genes play important roles in cellular differentiation, organismal development, metabolism, and circadian rhythms. Intracellular events observed to change with age included the methylation of bivalent chromatin domains, and targets of polycomb repressive complexes. These readily available epigenetic clocks can be used for elephant conservation efforts where accurate estimates of age are needed to predict demographic trends.


Assuntos
Envelhecimento/genética , Epigenômica/métodos , Animais , Elefantes , Metilação
16.
Aging Cell ; 20(5): e13349, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33797841

RESUMO

Cattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation-based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual-tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the biological age of oocytes. Both epigenetic clock studies and epigenome-wide association studies revealed that blood and oocytes differ substantially with respect to aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood; however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Oócitos/metabolismo , Animais , Bovinos , Ilhas de CpG , Feminino , Humanos , Modelos Animais , Reprodução
17.
Sci Rep ; 10(1): 2200, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042076

RESUMO

Over the past decades, there have been huge advances in understanding cellular responses to ionising radiation (IR) and DNA damage. These studies, however, were mostly executed with cell lines and mice using single or multiple acute doses of radiation. Hence, relatively little is known about how continuous exposure to low dose ionising radiation affects normal cells and organisms, even though our cells are constantly exposed to low levels of radiation. We addressed this issue by examining the consequences of exposing human primary cells to continuous ionising γ-radiation delivered at 6-20 mGy/h. Although these dose rates are estimated to inflict fewer than a single DNA double-strand break (DSB) per hour per cell, they still caused dose-dependent reductions in cell proliferation and increased cellular senescence. We concomitantly observed histone protein levels to reduce by up to 40%, which in contrast to previous observations, was not mainly due to protein degradation but instead correlated with reduced histone gene expression. Histone reductions were accompanied by enlarged nuclear size paralleled by an increase in global transcription, including that of pro-inflammatory genes. Thus, chronic irradiation, even at low dose-rates, can induce cell senescence and alter gene expression via a hitherto uncharacterised epigenetic route. These features of chronic radiation represent a new aspect of radiation biology.


Assuntos
Cromatina/efeitos da radiação , Expressão Gênica/efeitos da radiação , Histonas/efeitos da radiação , Animais , Linhagem Celular , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama , Histonas/genética , Humanos , Masculino , Camundongos , Cultura Primária de Células
18.
Aging (Albany NY) ; 11(10): 3238-3249, 2019 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31136303

RESUMO

The advent of epigenetic clocks has prompted questions about the place of epigenetic ageing within the current understanding of ageing biology. It was hitherto unclear whether epigenetic ageing represents a distinct mode of ageing or a manifestation of a known characteristic of ageing. We report here that epigenetic ageing is not affected by replicative senescence, telomere length, somatic cell differentiation, cellular proliferation rate or frequency. It is instead retarded by rapamycin, the potent inhibitor of the mTOR complex which governs many pathways relating to cellular metabolism. Rapamycin, however, is also an effective inhibitor of cellular senescence. Hence cellular metabolism underlies two independent arms of ageing - cellular senescence and epigenetic ageing. The demonstration that a compound that targets metabolism can slow epigenetic ageing provides a long-awaited point-of-entry into elucidating the molecular pathways that underpin the latter. Lastly, we report here an in vitro assay, validated in humans, that recapitulates human epigenetic ageing that can be used to investigate and identify potential interventions that can inhibit or retard it.


Assuntos
Envelhecimento/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Amidas , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Senescência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Queratinócitos/efeitos dos fármacos , Cultura Primária de Células , Piridinas , Homeostase do Telômero , Quinases Associadas a rho/antagonistas & inibidores
19.
Oncotarget ; 8(47): 82049-82063, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137243

RESUMO

The association between ionising radiation (IR) exposure and risk of cardiovascular diseases (CVD) is well documented, but the underlying mechanism is still poorly understood. As atherosclerotic plaques are the most common cause of CVD, we investigated the effects of IR on one of the critical parameters for atherosclerotic plaque formation - endothelium permeability to macromolecules. We used endothelial cells from human coronary artery as a model of the endothelial layer. Our results show that exposure of this endothelial layer to IR increased its permeability to macromolecules of various sizes in a dose-dependent manner. Immunofluorescence analysis revealed disruption of cell junctions caused by decreased amounts of two junction proteins, one of which is vascular endothelial cadherin (VE-cadherin). The reduction in the level of this protein was not due to diminished transcription but to protein processing instead. We observed a radiation dose-dependent increase in the cleavage of VE-cadherin by ADAM10. This was not mediated through the canonical VEGF route but was instead accompanied by intra-cellular calcium release. Importantly, inhibition of ADAM10 activity rescued IR-induced permeability. Our observations demonstrate that exposure to IR activates ADAM10 to cleave VE-cadherin leading to augmented endothelium permeability; a feature that can lead to the development of atherosclerotic plaques and increase the risk of cardiovascular disease.

20.
Sci Rep ; 7(1): 11105, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894213

RESUMO

Increasing evidence regarding positive effects of exposure to sunlight has led to suggestions that current advice may be overly weighted in favour of avoidance. UV-A has been reported to lower blood pressure, possibly through nitric oxide (NO) production in skin. Here, we set out to investigate effects of UV-A and solar-simulated radiation on the potential source of dermal NO, the effective doses and wavelengths, the responsiveness of different human skin cells, the magnitude of inter-individual differences and the potential influence of age. We utilised isogenic keratinocytes, microvascular endothelial cells, melanocytes and fibroblasts isolated from 36 human skins ranging from neonates to 86 years old. We show that keratinocytes and microvascular endothelial cells show greatest NO release following biologically relevant doses of UV-A. This was consistent across multiple neonatal donors and the effect is maintained in adult keratinocytes. Our observations are consistent with a bi-phasic mechanism by which UV-A can trigger vasodilatory effects. Analyses of NO-production spectra adds further evidence that nitrites in skin cells are the source of UV-mediated NO release. These potentially positive effects of ultraviolet radiation lend support for objective assessment of environmental influence on human health and the idea of "healthy sun exposure".


Assuntos
Óxido Nítrico/biossíntese , Raios Ultravioleta , Idoso , Idoso de 80 Anos ou mais , Dano ao DNA/efeitos da radiação , Feminino , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Prepúcio do Pênis/metabolismo , Prepúcio do Pênis/efeitos da radiação , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Masculino , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA