Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8374, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600087

RESUMO

The present study aims to examine the characteristics of a composite material composed of glass/madar fibers and porcelain particles, which are reinforced with epoxy. A compression molding technique achieves the fabrication of this composite. A comprehensive characterization was conducted by employing a mixture of analytical techniques, including X-ray Diffraction (XRD), mechanical testing, Scanning Electron Microscopy (SEM), Dynamic Mechanical Analysis (DMA), and Thermogravimetric Analysis (TGA). The composition of the composite was determined using X-ray diffraction (XRD) analysis, which demonstrated the successful integration of porcelain fillers. The material exhibited notable mechanical properties, rendering it appropriate for utilization in structural applications. The utilization of SEM facilitated the examination of the microstructure of the composite material, thereby providing a deeper understanding of the interactions between the fibers and the matrix. DMA results revealed the glass/madar composite contained 4.2% higher viscoelastic properties when the addition of porcelain filler, thermal stability was improved up to the maximum temperature of 357 °C. This study provided significant insights into the properties of a hybrid epoxy composite consisting of glass/madar fibers reinforced porcelain particles.

2.
Heliyon ; 10(8): e29818, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681603

RESUMO

Environmental consciousness motivates scientists to devise an alternative method for producing natural fiber composite materials in order to decrease the demand for synthetic fibers. This study explores the potential of a novel composite material derived from madar fiber-reinforced epoxy with porcelain filler particulates, designed specifically for biomedical instrumentation applications. The primary focus is to assess the material's structural, mechanical, and antibacterial properties. X-ray Diffraction analysis was employed to discern the crystalline nature of the composite, revealing enhanced crystallinity due to the inclusion of porcelain particulates. Fourier-Transform Infrared Spectroscopy confirmed the chemical interactions and bonding mechanisms between madar fiber, epoxy matrix, and porcelain filler. Mechanically, the composite exhibited superior properties when addition of porcelain fillers, maximum results obtain in tensile strength of 51.28 MPa, flexural strength of 54.21 MPa, and impact strength of 0.0155 kJ/m2, making it ideal for robust biomedical applications. Scanning Electron Microscopy provided detailed insights into the morphology and distribution of the reinforcing agents within the epoxy matrix, emphasizing the fibrillated structure of madar fiber and the uniform dispersion of porcelain particulates. Importantly, antibacterial assays demonstrated the composite's potential resistance against common pathogenic bacteria, which is crucial for biomedical instrumentation. Collectively, this research underscores the promising attributes of the madar fiber reinforced epoxy composite with porcelain particulates, suggesting its suitability for advanced biomedical applications.

3.
Environ Res ; 244: 117888, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097060

RESUMO

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Perda e Desperdício de Alimentos , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/toxicidade
4.
Sci Rep ; 13(1): 16291, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770492

RESUMO

In recent trends, the usage of synthetic materials has been reduced by introducing natural fibres for lightweight applications. In this study, Madar (Calotropis gigantea) fibre is selected for the reinforcement phase (40%), and the epoxy polymer is blended with bran filler selected as a matrix material. To calculate hybrid composite mechanical characteristics, five composite laminates with different fibre/filler weight ratios were made. The results show that when the weight ratio of madar fibre increased, the superior mechanical properties were observed in the composite laminate sample (A), such as tensile strength (20.85 MPa), flexural strength (24.14 MPa), impact energy absorption (23 J) compared with an increasing the weight ratio of bran nanofiller to this composite material. At the same time, increasing bran nanofillers can improve thermal stability up to 445 °C of degrading temperature. To analyse the surface interaction between the madar fibres, bran nanofillers, and epoxy matrix by conducting the scanning electron microscope (SEM) analysis before subjecting to the mechanical test and also to identify the failure mode by conducting the SEM test after the laminates are broken during the mechanical tests of the hybrid composite.

5.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883698

RESUMO

In recent days, natural fibers are extremely influential in numerous applications such as automobile body building, boat construction, civil structure, and packing goods. Intensification of the properties of natural fibers is achieved by blending different natural fibers with resin in a proper mixing ratio. This investigation aims to synthesize a hybrid polymer matrix composite with the use of natural fibers of flax and loops of hemp in the epoxy matrix. The synthesized composites were characterized in terms of tribological and mechanical properties. The Taguchi L16 orthogonal array is employed in the preparation of composite samples as well as analysis and optimization of the synthesis parameters. The optimization of compression molding process parameters has enhanced the results of this investigation. The parameters chosen are percentage of reinforcement (20%, 30%, 40%, and 50%), molding temperature (150 °C, 160 °C, 170 °C, and 180 °C), molding pressure (1 MPa, 2 MPa, 3 MPa, and 4 MPa), and curing time (20 min, 25 min, 30 min, and 35 min). From the analysis, it was observed that the percentage of reinforcement is contributing more to altering the fatigue strength, and the curing time is influenced in the impact and wear analysis.

6.
Polymers (Basel) ; 13(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833158

RESUMO

Awareness of environmental concerns influences researchers to develop an alternative method of developing natural fiber composite materials, to reduce the consumption of synthetic fibers. This research attempted testing the neem (Azadirachta indica) fiber and the banyan (Ficus benghalensis) fiber at different weight fractions, under flame retardant and thermal testing, in the interest of manufacturing efficient products and parts in real-time applications. The hybrid composite consists of 25% fiber reinforcement, 70% matrix material, and 5% bran filler. Their thermal properties-short-term heat deflection, temperature, thermal conductivity, and thermal expansion-were used to quantify the effect of potential epoxy composites. Although natural composite materials are widely utilized, their uses are limited since many of them are combustible. As a result, there has been a lot of focus on making them flame resistant. The thermal analysis revealed the sample B was given 26% more short-term heat resistance when the presence of banyan fiber loading is maximum. The maximum heat deflection temperature occurred in sample A (104.5 °C) and sample B (99.2 °C), which shows a 36% greater thermal expansion compared with chopped neem fiber loading. In sample F, an increased chopped neem fiber weight fraction gave a 40% higher thermal conductivity, when compared to increasing the bidirectional banyan mat of this hybrid composite. The maximum flame retardant capacity occurred in samples A and B, with endurance up to 12.9 and 11.8 min during the flame test of the hybrid composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA