Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 10: 183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977656

RESUMO

Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g(-1) at 1 A g(-1), which is much higher than the specific capacitance of pure PANI (367 F g(-1)). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.

2.
J Nanosci Nanotechnol ; 15(11): 9066-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726644

RESUMO

Nanocomposite of acrylonitrile butadiene styrene (ABS) and melamine functionalized reduced graphene oxide (M-RGO) was prepared by solution blending. The functionalization of graphene oxide was performed with melamine to increase the compatibility between graphene sheets and the ABS matrix. The ABS/M-RGO showed improved storage modulus by 55% at 4.0 wt% of M-RGO in the glassy region and exhibited a low percolation threshold with a high electrical conductivity.

3.
Nanoscale Res Lett ; 9(1): 535, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25298756

RESUMO

An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g(-1) at 0.2 A g(-1) in 2 M H2SO4 compared to a value of 141 F g(-1) for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode.

4.
Nanoscale Res Lett ; 9(1): 265, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936163

RESUMO

Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were prepared via solution blending. Different dispersions of FGOs over PS were obtained for the three alkylamines, and the properties of the PS composites were influenced by the length of the alkylamine. A better thermal stability was observed with a longer chain length of the alkylamine. On the other hand, functionalization with the shortest chain length alkylamine resulted in the highest increase in the storage modulus (3,640 MPa, 140%) at a 10 wt.% loading of FGO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA