Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 32(3): 386-401, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35981081

RESUMO

De novo deleterious and heritable biallelic mutations in the DNA binding domain (DBD) of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of disorders termed DEAF1-associated neurodevelopmental disorders (DAND). RNA-sequencing using hippocampal RNA from mice with conditional deletion of Deaf1 in the central nervous system indicate that loss of Deaf1 activity results in the altered expression of genes involved in neuronal function, dendritic spine maintenance, development, and activity, with reduced dendritic spines in hippocampal regions. Since DEAF1 is not a dosage-sensitive gene, we assessed the dominant negative activity of previously identified de novo variants and a heritable recessive DEAF1 variant on selected DEAF1-regulated genes in 2 different cell models. While no altered gene expression was observed in cells over-expressing the recessive heritable variant, the gene expression profiles of cells over-expressing de novo variants resulted in similar gene expression changes as observed in CRISPR-Cas9-mediated DEAF1-deleted cells. Altered expression of DEAF1-regulated genes was rescued by exogenous expression of WT-DEAF1 but not by de novo variants in cells lacking endogenous DEAF1. De novo heterozygous variants within the DBD of DEAF1 were identified in 10 individuals with a phenotypic spectrum including autism spectrum disorder, developmental delays, sleep disturbance, high pain tolerance, and mild dysmorphic features. Functional assays demonstrate these variants alter DEAF1 transcriptional activity. Taken together, this study expands the clinical phenotypic spectrum of individuals with DAND, furthers our understanding of potential roles of DEAF1 on neuronal function, and demonstrates dominant negative activity of identified de novo variants.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA
2.
Psychoneuroendocrinology ; 145: 105918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116320

RESUMO

Oxytocin (OT) is essential for successful reproduction, particularly during parturition and lactation. During the postpartum period, OT also influences maternal behavior to promote bonding between mothers and their newborns, and increases stress resilience. However, the mechanism by which stress influences OT neuron activity and OT release has remained unclear. Here, we provide evidence that a subpopulation of OT neurons initiate expression of the receptor for the stress neuropeptide Corticotropin Releasing Factor (CRF), CRFR1, in reproductive females. OT neuron expression of CRFR1 begins at the first parturition and increases during the postpartum period until weaning. The percentage of OT neurons that express CRFR1 increases with successive breeding cycles until it reaches a plateau of 20-25% of OT neurons. OT neuron expression of CRFR1 in reproductive females is maintained after they are no longer actively breeding. CRFR1 expression leads to activation of OT neurons when animals are stressed. We propose a model in which direct CRF signaling to OT neurons selectively in reproductive females potentiates OT release to promote stress resilience in mothers.


Assuntos
Hormônio Liberador da Corticotropina , Ocitocina , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Neurônios/metabolismo , Ocitocina/metabolismo , Parto , Gravidez , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo
3.
Elife ; 112022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389341

RESUMO

Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the role of CRF1-expressing neurons in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat. We report that Crhr1 and Cre mRNA expression are highly colocalized in both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like and nocifensive behaviors. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons can now be performed in assays that require the use of rats as the model organism.


Assuntos
Núcleo Central da Amígdala , Hormônio Liberador da Corticotropina , Animais , Ansiedade , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Integrases , Camundongos , Nociceptividade , Ratos , Ratos Transgênicos , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo
4.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731450

RESUMO

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Assuntos
Globo Pálido/citologia , Globo Pálido/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Animais , Ansiedade/psicologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Comportamento Animal , Fenômenos Biomecânicos , Fenômenos Eletrofisiológicos , Feminino , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Optogenética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptores do Fator Natriurético Atrial/genética
5.
Neurobiol Stress ; 11: 100192, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31516918

RESUMO

The importance of a precisely coordinated neuroendocrine, autonomic, and behavioral stress response was a primary theme at the Stress Neurobiology Workshop 2018, held in the beautiful setting of Banff Provincial Park in Alberta, Canada. Much of the research featured at this meeting reinforced the importance of appropriately responding to stress in order to avoid various neuropsychiatric pathologies, including Post-Traumatic Stress Disorder (PTSD), depression, and addiction. Corticotropin-Releasing Factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) are central players in the stress response, integrating both external and visceral stress-relevant information, then directing neuroendocrine, autonomic and behavioral adaptations via endocrine and neural outputs of the PVN. The PVN contains a densely packed array of neuron types that respond to stress, including CRF neurons that activate the Hypothalamic-Pituitary-Adrenal (HPA) axis. Recently, identification of a new population of neurons in the PVN that express CRF Receptor 1 (CRFR1) has suggested that CRF release in the PVN signals to neighboring CRF responsive neurons, potentially functioning in HPA axis feedback, neuroendocrine coordination, and autonomic signaling. Here, we review our recent work characterizing an intra-PVN microcircuit in which locally released CRF release activates CRFR1+ neurons that make recurrent inhibitory GABAergic synapses onto CRF neurons to dampen excitability , therebylimiting HPA axis hyperactivity in response to stress and promoting stress recovery, which we presented in a poster session at the conference. We then discuss questions that have arisen following publication of our initial characterization of the microcircuit, regarding specific features of intra-PVN CRF signaling and its potential role in coordinating neuroendocrine, autonomic, and behavioral outputs of the PVN. Our presented work, as well as many of the presentations at the Stress Neurobiology Workshop 2018 together establish intra-PVN signaling as an important regulatory node in stress response pathways, which are central to the pathogenesis of neuropsychiatric disorders.

6.
Brain Struct Funct ; 223(6): 2685-2698, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29569009

RESUMO

Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.


Assuntos
Tonsila do Cerebelo/citologia , Hormônio Liberador da Corticotropina/metabolismo , Globo Pálido/citologia , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução Genética , Proteína Vermelha Fluorescente
7.
J Neurosci ; 38(8): 1874-1890, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352046

RESUMO

Corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) initiate hypothalamic-pituitary-adrenal axis activity through the release of CRF into the portal system as part of a coordinated neuroendocrine, autonomic, and behavioral response to stress. The recent discovery of neurons expressing CRF receptor type 1 (CRFR1), the primary receptor for CRF, adjacent to CRF neurons within the PVN, suggests that CRF also signals within the hypothalamus to coordinate aspects of the stress response. Here, we characterize the electrophysiological and molecular properties of PVN-CRFR1 neurons and interrogate their monosynaptic connectivity using rabies virus-based tracing and optogenetic circuit mapping in male and female mice. We provide evidence that CRF neurons in the PVN form synapses on neighboring CRFR1 neurons and activate them by releasing CRF. CRFR1 neurons receive the majority of monosynaptic input from within the hypothalamus, mainly from the PVN itself. Locally, CRFR1 neurons make GABAergic synapses on parvocellular and magnocellular cells within the PVN. CRFR1 neurons resident in the PVN also make long-range glutamatergic synapses in autonomic nuclei such as the nucleus of the solitary tract. Selective ablation of PVN-CRFR1 neurons in male mice elevates corticosterone release during a stress response and slows the decrease in circulating corticosterone levels after the cessation of stress. Our experiments provide evidence for a novel intra-PVN neural circuit that is activated by local CRF release and coordinates autonomic and endocrine function during stress responses.SIGNIFICANCE STATEMENT The hypothalamic paraventricular nucleus (PVN) coordinates concomitant changes in autonomic and neuroendocrine function to organize the response to stress. This manuscript maps intra-PVN circuitry that signals via CRF, delineates CRF receptor type 1 neuron synaptic targets both within the PVN and at distal targets, and establishes the role of this microcircuit in regulating hypothalamic-pituitary-adrenal axis activity.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário , Vias Neurais/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal , Animais , Feminino , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Sistema Hipófise-Suprarrenal/anatomia & histologia , Sistema Hipófise-Suprarrenal/metabolismo , Transdução de Sinais/fisiologia
8.
PLoS One ; 9(12): e115908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531106

RESUMO

DEAF1 is a transcriptional regulator associated with autoimmune and neurological disorders and is known to bind TTCG motifs. To further ascertain preferred DEAF1 DNA ligands, we screened a random oligonucleotide library containing an "anchored" CpG motif. We identified a binding consensus that generally conformed to a repeated TTCGGG motif, with the two invariant CpG dinucleotides separated by 6-11 nucleotides. Alteration of the consensus surrounding the dual CpG dinucleotides, or cytosine methylation of a single CpG half-site, eliminated DEAF1 binding. A sequence within the Htr1a promoter that resembles the binding consensus but contains a single CpG motif was confirmed to have low affinity binding with DEAF1. A DEAF1 binding consensus was identified in the EIF4G3 promoter and ChIP assay showed endogenous DEAF1 was bound to the region. We conclude that DEAF1 preferentially binds variably spaced and unmethylated CpG-containing half-sites when they occur within an appropriate consensus.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Fator de Iniciação Eucariótico 4G/genética , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Reação em Cadeia da Polimerase , Ligação Proteica , Fatores de Transcrição
9.
Am J Hum Genet ; 94(5): 649-61, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726472

RESUMO

Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.


Assuntos
Deficiência Intelectual/genética , Transtornos Mentais/genética , Proteínas Nucleares/genética , Distúrbios da Fala/genética , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA