Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Curr Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955177

RESUMO

Organisms experience constant nutritional flux. Mechanisms at the interface of opposing nutritional states-scarcity and surplus-enable organismal energy homeostasis. Contingent on nutritional stores, adipocytes secrete adipokines, such as the fat hormone leptin, to signal nutrient status to the central brain. Increased leptin secretion underlies metabolic dysregulation during common obesity, but the molecular mechanisms regulating leptin secretion from human adipocytes are poorly understood. Here, we report that Atg8/LC3 family proteins, best known for their role in autophagy during nutrient scarcity, play an evolutionarily conserved role during nutrient surplus by promoting adipokine secretion. We show that in a well-fed state, Atg8/LC3 promotes the secretion of the Drosophila functional leptin ortholog unpaired 2 (Upd2) and leptin from human adipocytes. Proteomic analyses reveal that LC3 directs leptin to a secretory pathway in human cells. We identified LC3-dependent extracellular vesicle (EV) loading and secretion (LDELS) as a required step for leptin release, highlighting a unique secretory route adopted by leptin in human adipocytes. In Drosophila, mutations to Upd2's Atg8 interaction motif (AIM) result in constitutive adipokine retention. Atg8-mediated Upd2 retention alters lipid storage and hunger response and rewires the bulk organismal transcriptome in a manner conducive to starvation survival. Thus, Atg8/LC3's bidirectional role in nutrient sensing-conveying nutrient surplus and responding to nutrient deprivation-enables organisms to manage nutrient flux effectively. We posit that decoding how bidirectional molecular switches-such as Atg8/LC3-operate at the nexus of nutritional scarcity and surplus will inform therapeutic strategies to tackle chronic metabolic disorders.

3.
PLoS Biol ; 21(11): e3002359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934726

RESUMO

Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Insulinas , Doenças Neurodegenerativas , Animais , Drosophila/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fagocitose/fisiologia , Neuroglia/metabolismo , Encéfalo/metabolismo , Dieta , Doenças Neurodegenerativas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Insulinas/metabolismo
4.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945507

RESUMO

Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure downregulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila Insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and draper expression. Significantly, we show that genetically stimulating Phosphoinositide 3-kinase (PI3K), a downstream effector of Insulin receptor signaling, rescues HSD-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.

5.
Elife ; 112022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36201241

RESUMO

Diet-induced obesity leads to dysfunctional feeding behavior. However, the precise molecular nodes underlying diet-induced feeding motivation dysregulation are poorly understood. The fruit fly is a simple genetic model system yet displays significant evolutionary conservation to mammalian nutrient sensing and energy balance. Using a longitudinal high-sugar regime in Drosophila, we sought to address how diet-induced changes in adipocyte lipid composition regulate feeding behavior. We observed that subjecting adult Drosophila to a prolonged high-sugar diet degrades the hunger-driven feeding response. Lipidomics analysis reveals that longitudinal exposure to high-sugar diets significantly alters whole-body phospholipid profiles. By performing a systematic genetic screen for phospholipid enzymes in adult fly adipocytes, we identify Pect as a critical regulator of hunger-driven feeding. Pect is a rate-limiting enzyme in the phosphatidylethanolamine (PE) biosynthesis pathway and the fly ortholog of human PCYT2. We show that disrupting Pect activity only in the Drosophila fat cells causes insulin resistance, dysregulated lipoprotein delivery to the brain, and a loss of hunger-driven feeding. Previously human studies have noted a correlation between PCYT2/Pect levels and clinical obesity. Now, our unbiased studies in Drosophila provide causative evidence for adipocyte Pect function in metabolic homeostasis. Altogether, we have uncovered that PE phospholipid homeostasis regulates hunger response.


Assuntos
Drosophila melanogaster , Fome , Animais , Drosophila , Drosophila melanogaster/genética , Corpo Adiposo/metabolismo , Comportamento Alimentar/fisiologia , Humanos , Fome/fisiologia , Mamíferos , Obesidade/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Açúcares/metabolismo
6.
J Genet Eng Biotechnol ; 20(1): 22, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138483

RESUMO

BACKGROUND: This study targets the enhanced production of L-asparaginase, an antitumor enzyme by Acinetobacter baumannii ZAS1. This organism is an endophyte isolated from the medicinal plant Annona muricata. Plackett-Burman design (PBD) and central composite design (CCD) were used for statistical optimization of media components. RESULTS: The organism exhibited 18.85 ± 0.2 U/mL enzyme activities in unoptimized media. Eight variables: L-asparagine, peptone, glucose, lactose, yeast extract, NaCl, MgSO4, and Na2HPO4 were screened by PBD. Among them, only four factors-L-asparagine, peptone, glucose, and Na2HPO4-were found to affect enzyme production significantly (p < 0.05). Furthermore, the best possible concentrations and interactive effects of the components that enhance this enzyme's output were chosen by using CCD on these selected variables. The results revealed that an optimized medium produces a higher concentration of enzymes than the unoptimized medium. After optimizing media components, the maximum L-asparaginase activity was 45.59 ± 0.36 U/mL, around the anticipated value of 45.04 ± 0.42 U/mL. After optimization of process parameters, it showed a 2.41-fold increase in the production of L-asparaginase by the endophyte Acinetobacter baumannii ZAS1. CONCLUSION: The findings of this study indicated that an endophyte, Acinetobacter baumannii ZAS1 that produces L-asparaginase could be used to increase enzyme output. However, using the statistical methods Plackett-Burman design and central composite design of response surface methodology is a handy tool for optimizing media components for increased L-asparaginase synthesis.

7.
Cell Metab ; 32(5): 786-800.e7, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32976758

RESUMO

Energy-sensing neural circuits decide to expend or conserve resources based, in part, on the tonic, steady-state, energy-store information they receive. Tonic signals, in the form of adipose tissue-derived adipokines, set the baseline level of activity in the energy-sensing neurons, thereby providing context for interpretation of additional inputs. However, the mechanism by which tonic adipokine information establishes steady-state neuronal function has heretofore been unclear. We show here that under conditions of nutrient surplus, Upd2, a Drosophila leptin ortholog, regulates actin-based synapse reorganization to reduce bouton number in an inhibitory circuit, thus establishing a neural tone that is permissive for insulin release. Unexpectedly, we found that insulin feeds back on these same inhibitory neurons to conversely increase bouton number, resulting in maintenance of negative tone. Our results point to a mechanism by which two surplus-sensing hormonal systems, Upd2/leptin and insulin, converge on a neuronal circuit with opposing outcomes to establish energy-store-dependent neuron activity.


Assuntos
Proteínas de Drosophila/metabolismo , Gorduras/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Drosophila melanogaster
8.
Dev Cell ; 43(1): 83-98.e6, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017032

RESUMO

Adipocytes sense systemic nutrient status and systemically communicate this information by releasing adipokines. The mechanisms that couple nutritional state to adipokine release are unknown. Here, we investigated how Unpaired 2 (Upd2), a structural and functional ortholog of the primary human adipokine leptin, is released from Drosophila fat cells. We find that Golgi reassembly stacking protein (GRASP), an unconventional secretion pathway component, is required for Upd2 secretion. In nutrient-rich fat cells, GRASP clusters in close proximity to the apical side of lipid droplets (LDs). During nutrient deprivation, glucagon-mediated increase in calcium (Ca2+) levels, via calmodulin kinase II (CaMKII) phosphorylation, inhibits proximal GRASP localization to LDs. Using a heterologous cell system, we show that human leptin secretion is also regulated by Ca2+ and CaMKII. In summary, we describe a mechanism by which increased cytosolic Ca2+ negatively regulates adipokine secretion and have uncovered an evolutionarily conserved molecular link between intracellular Ca2+ levels and energy homeostasis.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Homeostase/fisiologia , Animais , Cálcio/metabolismo , Drosophila melanogaster , Humanos , Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Fosforilação , Transporte Proteico
9.
J Biomed Mater Res B Appl Biomater ; 105(3): 489-496, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26546090

RESUMO

Scaffolds prepared from cholecyst and jejunum have differential immunological potential, despite similar biocompatibility, when used as subcutaneous grafts. The reason for differential immunogenicity is probably due to differences in the nature of protein composition and biomolecules in the extracellular matrices (ECMs) of source organs that are used for preparation of the scaffolds. Against this background, the present study aims to identify the extractable proteins of ECMs derived from porcine cholecyst and jejunum. The proteins were extracted and identified through a conventional database search following sodium dodecyl sulfate-polyacrylamide gel-electrophoresis separation and mass spectroscopy. The resultant protein profile was analyzed and at least 154 proteins in cholecyst-derived extracellular matrix (CDE) and 186 proteins in jejunum-derived extracellular matrix (JDE) were identified. Both the matrices contained several extracelluar proteins including fibronectin, nidogen, decorin, and lumican that are known to participate in wound healing responses. However, the CDE had fewer cellular proteins than JDE, especially the latter contained class-I and class-II histocompatibility antigens which are incriminated as potent immunogens responsible for graft rejection. The results of the study suggested that the ECMs used for the scaffold preparation need not be "acellular" and differences in the protein composition of the ECMs might have caused the differential wound healing responses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 489-496, 2017.


Assuntos
Proteínas da Matriz Extracelular/química , Vesícula Biliar/química , Intestino Delgado/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Proteínas da Matriz Extracelular/metabolismo , Vesícula Biliar/metabolismo , Intestino Delgado/metabolismo , Suínos
10.
J Biomater Appl ; 29(9): 1218-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25425562

RESUMO

Scaffolds prepared using extracellular matrices of mammalian organs/tissues, when used as grafts, have wound healing potential. This paper evaluated the physical properties and in vivo wound healing potential of jejunum-derived scaffold (JDS) and urinary bladder-derived scaffold (UDS) of porcine origin prepared by a non-detergent/enzymatic method. The former had higher flexural rigidity and suture retention strength compared to the latter, but both of them had the essential flexural rigidity and suture retention strength required for skin grafts. Full thickness skin-wounds on rabbit dorsum were treated with these scaffolds and the wound healing ability was compared by studying histomorphology parameters such as re-epithelialisation, collagen deposition, angiogenesis, proliferation of cells, mesenchymal cell infiltration and myofibroblast response. The extent of these reactions was assessed using histomorphometry. The results indicated that both grafts initiated healing faster than those wounds without any graft, as evidenced by the extent of cell proliferation and mesenchymal cell infiltration. The myofibroblast response persisted longer in the non-graft assisted wound healing reaction compared to the healing in the graft assisted wounds. Moreover, the JDS induced higher cell proliferation and greater angiogenesis than UDS probably indicating better healing by the former. The results suggested that JDS and UDS prepared by non-detergent/enzymatic method have potential clinical applications.


Assuntos
Pele/lesões , Alicerces Teciduais , Cicatrização , Animais , Proliferação de Células , Colágeno/metabolismo , Matriz Extracelular/química , Jejuno/química , Teste de Materiais , Células-Tronco Mesenquimais/patologia , Miofibroblastos/patologia , Neovascularização Fisiológica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Coelhos , Pele/patologia , Pele/fisiopatologia , Suínos , Engenharia Tecidual , Alicerces Teciduais/química , Bexiga Urinária/química
11.
Toxicol Pathol ; 43(4): 536-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25318959

RESUMO

Comparative histomorphological assessment of local response to implanted reference biomaterial, also called biocompatibility testing/evaluation, in an appropriate animal model is a widely practiced safety evaluation procedure performed on biomaterials before clinical use. Standardized protocols and procedures, originally designed for testing synthetic materials, available for the testing/evaluation do not account for the immunogenic potential of a candidate biomaterial. Therefore, it is appropriate to supplement the routine biocompatibility test reports with adjunct data that may provide insight into the immunogenic potential of candidate biomaterials, especially when testing biomaterials that are derived from mammalian sources. This article presents expanded safety evaluation data of a porcine cholecyst-derived scaffold (CDS) intended as a xenogeneic graft. The biocompatibility was tested in rat subcutaneous model in comparison with a reference material and the CDS was found biocompatible. However, when studied by immunohistochemistry and real-time reverse transcription polymerase chain reaction for the number and/or polarization of M1 macrophage, M2 macrophage, cytotoxic T-cell, helper T cell, TH1 cell, and TH2 cell, the CDS appeared to induce a differential local immunopathological tissue reaction despite the similarity in biocompatibility with the reference material. The adjunct data collected were useful for objectively assessing the safety of CDS as a xenograft.


Assuntos
Materiais Biocompatíveis/química , Alicerces Teciduais/química , Transplante Heterólogo/métodos , Animais , Materiais Biocompatíveis/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Imunofenotipagem , Implantes Experimentais , Teste de Materiais/métodos , Fenótipo , Ratos , Ratos Sprague-Dawley , Suínos
12.
J Biomed Mater Res B Appl Biomater ; 103(6): 1302-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25370716

RESUMO

Extracellular matrices isolated from several mammalian organs/tissues have found several clinical uses as xenografts or implants. However, they may cause complications because of adverse immunologic reactions. Scaffolds that promote favorable graft-acceptance reaction are preferred for fabricating xenografts. The objective of this study was to evaluate the immunogenic potential of a porcine cholecyst-derived scaffold (CDS), prepared by a non-detergent/enzymatic method, in comparison with jejunum and urinary bladder-derived scaffolds in a rat subcutaneous model. Key graft-rejection/acceptance reaction was evaluated at the site of implantation by studying the occurrence and/or function of immunocompetent cells in the tissue reaction. There was differential occurrence of M1-macrophage, M2-macrophage, T-helper cells, T-cytotoxic cells, B-cells, and mast cells in the tissue reaction and the CDS attracted few cells compared with other scaffolds. Real-time polymerase chain reaction for evaluating mRNA of functional markers like inducible nitric oxide synthase (M1 macrophage), arginase 1 (M2 macrophage), interferon gamma (TH1 lymphocytes), and interlukin-4 (TH2 lymphocytes) suggested that the CDS, compared with the scaffolds prepared from small intestine and urinary bladder, elicited M2 macrophage and TH2 lymphocyte polarization that are congenial graft-acceptance reactions. The results indicated that CDS has less immunogenic potential compared with the scaffolds prepared from jejunum and urinary bladder when used as subcutaneous graft in rats. It was concluded that CDS is a promising animal-derived xenograft for biomedical application.


Assuntos
Vesícula Biliar/química , Jejuno/química , Teste de Materiais , Alicerces Teciduais/química , Bexiga Urinária/química , Animais , Ratos , Ratos Sprague-Dawley , Suínos
13.
J Biomed Mater Res B Appl Biomater ; 102(7): 1506-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24596163

RESUMO

Isolation procedures for the recovery of extracellular matrices (ECMs) from animal organs/tissues that are useful in regenerative medicine involve multiple sequential steps/stages including collection of the source organ at slaughter, their transportation to laboratory, decellularization, decontamination, stabilization, and sterilization. Most of these steps require extensive use of chemicals/reagents/enzymes which may also adversely affect the quality of the scaffold. With an effort to minimize the use of chemicals/reagents/enzymes, while extracting biomaterial-grade ECM from porcine cholecyst (gall bladder), we performed preisolation ex situ incubation of the organ in a stabilizing agent that also caused in situ crosslinking of tissue-components and delaminated the collagen-rich ECM from the tissue-layer beneath the mucosa. The physical, chemical, and biological properties of the isolated scaffolds were similar to that of a commercially available porcine small intestinal submucosa. The cholecyst-derived scaffold not only satisfied preclinical safety-test procedures such as cytotoxicity, local response, and endotoxin load but also showed the potential to promote healing of full-thickness skin wound in a rabbit model. The procedure was also suitable for isolating scaffolds from other hollow organs such as jejunum and urinary bladder. It was concluded that enzyme/detergent treatment may be an avoidable step while isolating biomaterial-grade scaffolds from hollow organs.


Assuntos
Bioprótese , Matriz Extracelular/química , Vesícula Biliar/química , Teste de Materiais , Alicerces Teciduais/química , Animais , Linhagem Celular , Coelhos
14.
BMC Biol ; 11: 38, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587196

RESUMO

The fruit fly Drosophila has contributed significantly to our general understanding of the basic principles of signaling, cell and developmental biology, and neurobiology. However, answers to questions pertaining to energy metabolism have been so far mostly addressed in more complex model organisms such as mice. We review in this article recent studies that show how the genetic tractability and simplicity of Drosophila are being used to identify novel regulatory mechanisms at the organismal level, and to query the co-ordination between energy metabolism and other processes such as neurodegeneration, circadian rhythms, immunity, and tumor biology.


Assuntos
Drosophila melanogaster/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Metabolismo dos Lipídeos , Longevidade , Mamíferos/metabolismo , Estresse Fisiológico
15.
J Tissue Eng ; 4: 2041731413518060, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24555014

RESUMO

Graft-assisted healing is an important strategy for treating full-thickness skin wounds. This study evaluated the properties of porcine cholecyst-derived scaffold and its use for treating full-thickness skin wound in rabbit. The physical properties of cholecyst-derived scaffold were congenial for skin-graft application. Compared to a commercially available skin-graft substitute made of porcine small intestinal submucosa, the cholecyst-derived scaffold was rich in natural biomolecules like elastin and glycosaminoglycans. When used as a xenograft, it promoted healing with excess cell proliferation at early phases and acceptable collagen deposition in the later remodelling phases.

16.
Cell ; 151(1): 123-37, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021220

RESUMO

In Drosophila, the fat body (FB), a functional analog of the vertebrate adipose tissue, is the nutrient sensor that conveys the nutrient status to the insulin-producing cells (IPCs) in the fly brain to release Drosophila insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired 2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the fed state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metabolismo Energético , Insulina/metabolismo , Neuropeptídeos/metabolismo , Animais , Metabolismo dos Carboidratos , Corpo Adiposo/metabolismo , Gorduras/metabolismo , Feminino , Humanos , Secreção de Insulina , Janus Quinases/metabolismo , Leptina/metabolismo , Masculino
17.
Neuron ; 71(3): 447-59, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21835342

RESUMO

Neurons establish specific synaptic connections with their targets, a process that is highly regulated. Numerous cell adhesion molecules have been implicated in target recognition, but how these proteins are precisely trafficked and targeted is poorly understood. To identify components that affect synaptic specificity, we carried out a forward genetic screen in the Drosophila eye. We identified a gene, named ric1 homologue (rich), whose loss leads to synaptic specificity defects. Loss of rich leads to reduction of N-Cadherin in the photoreceptor cell synapses but not of other proteins implicated in target recognition, including Sec15, DLAR, Jelly belly, and PTP69D. The Rich protein binds to Rab6, and Rab6 mutants display very similar phenotypes as the rich mutants. The active form of Rab6 strongly suppresses the rich synaptic specificity defect, indicating that Rab6 is regulated by Rich. We propose that Rich activates Rab6 to regulate N-Cadherin trafficking and affects synaptic specificity.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas ras/genética , Animais , Drosophila , Proteínas de Drosophila/genética , Mutação , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses/genética , Sinapses/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas ras/metabolismo
18.
Dev Cell ; 21(1): 29-31, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21763605

RESUMO

Current studies of physiological communication between Drosophila organs are beginning to address the fundamental problem of how nutrients regulate organismal growth, stem cell behavior, immunity, and aging. Advances in the Drosophila genetic tool kit will allow the design of genetic screens to systematically identify factors involved in organ communication.


Assuntos
Drosophila/fisiologia , Metabolismo Energético , Homeostase , Modelos Animais , Envelhecimento , Animais , Drosophila/citologia , Drosophila/genética , Drosophila/imunologia , Células-Tronco/citologia
19.
Cell Metab ; 12(1): 7-9, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20620990

RESUMO

In flies, ecdysone integrates growth with developmental transitions by antagonizing insulin signaling, which links growth with nutritional status. Work in Developmental Cell (Delanoue et. al, 2010) finds that ecdysone represses the transcription factor Myc in the larval fat body to inhibit systemic growth, revealing a mechanism for such coordination.

20.
Braz. arch. biol. technol ; 53(3): 555-562, May-June 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-548575

RESUMO

The lignocellulosic biomass from arecanut husk (Areca catechu Linnaeus) was evaluated as a new substrate for cultivation of Phanerochaete chrysosporium and Phanerochaete sp for solid state fermentation of manganese peroxidase (MnP). Arecanut had a moisture content of 79.84 percent for ripe nut husk whereas green nut husk had 68.39 percent moisture and a pH of 5.0, 3.0 and 7.0 for raw, ripe and dry husk. Reducing sugar content was 14.31, 19.21 and 1.77(mg/g of husk) for raw, ripe and dry nut husk, respectively. Non reducing sugar was 1.04(mg/g of husk) for raw and 0.68 (mg/g of husk) for dry husk. Solid state fermentation carried out at different pH showed optimum enzyme production at pH 6.0 (52.60 IU/g) for P.chrysosporium and pH 5.0 (44.08 IU/g) for Phanerochaete sp. Optimum temperature was 30 ± 2º C for both the organisms. Lower concentration of MnSO4 (0.1 mM MnSO4) induced maximum enzyme production in P.chrysosporium whereas Phanerochaete sp. required 1 mM MnSO4 for induction. Absence of carbon and nitrogen stimulated enzyme production in P.chrysosporium while Phanerochaete sp. needed nitrogen. Enzyme was partially purified by ammonium sulphate precipitation followed by ion exchange chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA