Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 23(1): 208, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098502

RESUMO

Brugada syndrome is an inherited cardiac arrhythmia disorder that is mainly associated with mutations of the cardiac voltage-gated sodium channel alpha subunit 5 (SCN5A) gene. The clinical symptoms include ventricular fibrillation and an increased risk of sudden cardiac death. Human-induced pluripotent stem cell (hiPSC) lines were derived from symptomatic and asymptomatic individuals carrying the R1913C mutation in the SCN5A gene. The present work aimed to observe the phenotype-specific differences in hiPSC-derived cardiomyocytes (CMs) obtained from symptomatic and asymptomatic mutation carriers. In this study, CM electrophysiological properties, beating abilities and calcium parameters were measured. Mutant CMs exhibited higher average sodium current densities than healthy CMs, but the differences were not statistically significant. Action potential durations were significantly shorter in CMs from the symptomatic individual, and a spike-and-dome morphology of action potential was exclusively observed in CMs from the symptomatic individual. More arrhythmias occurred in mutant CMs at single cell and cell aggregate levels compared with those observed in wild-type CMs. Moreover, there were no major differences in ionic currents or intracellular calcium dynamics between the CMs of asymptomatic and symptomatic individuals after the administration of adrenaline and flecainide.In conclusion, mutant CMs were more prone to arrhythmia than healthy CMs but did not explain why only one of the mutation carriers was symptomatic.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes Induzidas , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Potenciais de Ação , Mutação
2.
Biomed Microdevices ; 22(2): 41, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494857

RESUMO

Luminescence-based oxygen sensing is a widely used tool in cell culture applications. In a typical configuration, the luminescent oxygen indicators are embedded in a solid, oxygen-permeable matrix in contact with the culture medium. However, in sensitive cell cultures even minimal leaching of the potentially cytotoxic indicators can become an issue. One way to prevent the leaching is to immobilize the indicators covalently into the supporting matrix. In this paper, we report on a method where platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP) oxygen indicators are covalently immobilized into a polymer matrix consisting of polystyrene and poly(pentafluorostyrene). We study how the covalent immobilization influences the sensing material's cytotoxicity to human induced pluripotent stem cell-derived (hiPSC-derived) neurons and cardiomyocytes (CMs) through 7-13 days culturing experiments and various viability analyses. Furthermore, we study the effect of the covalent immobilization on the indicator leaching and the oxygen sensing properties of the material. In addition, we demonstrate the use of the covalently linked oxygen sensing material in real time oxygen tension monitoring in functional hypoxia studies of the hiPSC-derived CMs. The results show that the covalently immobilized indicators substantially reduce indicator leaching and the cytotoxicity of the oxygen sensing material, while the influence on the oxygen sensing properties remains small or nonexistent.


Assuntos
Substâncias Luminescentes/química , Substâncias Luminescentes/toxicidade , Oxigênio/análise , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Porfirinas/química
3.
SLAS Technol ; 23(6): 566-579, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29723086

RESUMO

A physiologically relevant environment is essential for successful long-term cell culturing in vitro. Precise control of temperature, one of the most crucial environmental parameters in cell cultures, increases the fidelity and repeatability of the experiments. Unfortunately, direct temperature measurement can interfere with the cultures or prevent imaging of the cells. Furthermore, the assessment of dynamic temperature variations in the cell culture area is challenging with the methods traditionally used for measuring temperature in cell culture systems. To overcome these challenges, we integrated a microscale cell culture environment together with live-cell imaging and a precise local temperature control that is based on an indirect measurement. The control method uses a remote temperature measurement and a mathematical model for estimating temperature at the desired area. The system maintained the temperature at 37±0.3 °C for more than 4 days. We also showed that the system precisely controls the culture temperature during temperature transients and compensates for the disturbance when changing the cell cultivation medium, and presented the portability of the heating system. Finally, we demonstrated a successful long-term culturing of human induced stem cell-derived beating cardiomyocytes, and analyzed their beating rates at different temperatures.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Temperatura , Humanos , Miócitos Cardíacos/fisiologia
4.
Talanta ; 161: 755-761, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769477

RESUMO

A non-contact real time pH measurement using fully modular optical parts is described for phenol-red medium cell cultures. The modular parts can be sterilized, and once the measurement is started at the beginning of culture, no recalibration or maintenance is needed till the end of the culture. Measurements can be carried out without any special manual attention. The modular assembly of LED and sensor cassettes is unique, robust, reusable and reproducible. pH is measured in an intact closed flow system, without wasting any culture medium. A special pump encapsulation enables the system to be effortlessly functional in extremely humid incubator environments. This avoids lengthy sample tubings in and out of the incubator, associated large temperature changes and CO2 buffering issues. A new correction model to compensate errors caused e.g. by biolayers in spectrometric pH measurement is put-forward, which improves the accuracy of pH estimation significantly. The method provides resolution down to 0.1 pH unit in physiological pH range with mean absolute error 0.02.


Assuntos
Técnicas de Cultura de Células/métodos , Concentração de Íons de Hidrogênio , Tecido Adiposo/citologia , Feminino , Fibroblastos , Humanos , Indicadores e Reagentes , Pessoa de Meia-Idade , Fenolsulfonaftaleína , Impressão Tridimensional , Células-Tronco , Esterilização , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA