Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213903, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38824828

RESUMO

AIM: The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND: Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION: Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES: The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.

2.
Int J Pharm ; 657: 124109, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626846

RESUMO

Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Gefitinibe , Micelas , Poloxâmero , Vitamina E , Humanos , Poloxâmero/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Vitamina E/química , Feminino , Gefitinibe/administração & dosagem , Gefitinibe/farmacologia , Gefitinibe/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Dinâmica Molecular , Linhagem Celular Tumoral , Portadores de Fármacos/química , Simulação por Computador , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Animais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Polietilenoglicóis/química , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
3.
ACS Appl Bio Mater ; 7(2): 1028-1040, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275087

RESUMO

The wound curation dressing material should own explicit elements to aggrandize wound cessation. The cryogel of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA) is deemed to promote the angiogenesis, production of extracellular matrix components, granulation, and epithelialization. The research aims to tailor and evaluate the composite PVA/HA cryogel ingrained ferulic acid-loaded nanoemulsion patch labeled as PH-FemuFrost to improve the therapeutic properties and mechanical strength of the patches. The PH-FemuFrost exhibited a water uptake capacity of 268 ± 15.07%, porosity of 70.52 ± 7.4%, and 48.62 ± 2.2% in vitro degradation. The texture analysis revealed the improved mechanical properties of PH-FemuFrost in terms of burst strength and stiffness. The PH-FemuFrost exhibited in vitro antioxidant and antimicrobial activity against Staphylococcus aureus and Candida albicans species. The wound healing efficiency of PH-FemuFrost patches was significantly increased than blank PVA-HA patches. The groups treated with PH-FemuFrost exhibited a dense network of collagen type 1 in comparison to negative and PVA-HA groups. The normal skin and healed skin exhibited parallel arrangement of type I collagen fibers toward the skin. The levels of inflammatory mediators such as IL-6 (p value < 0.0001), IL-22 (p value 0.0098), and TNF-α levels (p value < 0.0001) of PH-FemuFrost is significantly reduced compared to the negative group.


Assuntos
Ácido Hialurônico , Álcool de Polivinil , Ácido Hialurônico/farmacologia , Antioxidantes/farmacologia , Criogéis , Antibacterianos , Etanol , Bandagens
4.
Int J Pharm ; 651: 123787, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184023

RESUMO

Targeted drug delivery is an advanced approach for active targeting of tumor that can enhance the concentration of the drug at the site of action and reduce the off-target toxicity and non-specific effects of the drug. Folate receptors (FR) are membrane-bound surface proteins, over-expressed in numerous solid tumors, folate and folate conjugates bind to FR with higher affinity. In the present investigation, we fabricated Folic acid (FA) decorated Palbociclib loaded lipid-polymer hybrid nanoparticles (FA-PLPHNPs) using quality by design (QbD) approach and evaluated its anti-cancer activity in folate receptor-positive breast cancer cell lines. 1HNMR, ATR-FTIR spectroscopic techniques confirmed the formation of DSPE-PEG-FA ligand. The optimized FA-PLPHNPs formulation exhibited 143.36 ± 5.24 nm, 0.172 ± 0.004, -16.84 ± 0.27 mV, and 93.12 ± 0.43 % of particle size, PDI, zeta potential and % entrapment efficiency, respectively. The FA-PLPHNPs exhibited an approximately 9, 11-fold reduction in IC50 values than free Palbociclib in MCF-7 and MDA-MB-231 cells at 48 h. The role of FA in targeting breast cancer was studied by means of a receptor-blocking assay, and concluded that FA-PLPHNPs were internalized into MCF-7 and MDA-MB-231 cells by folate receptor-mediated endocytosis. FA-PLPHNPs showed higher anti-cancer efficiency and caused enhanced reactive oxygen species generation, apoptosis (Acridine orange/ ethidium bromide dual staining and Annexin V/PI staining), reduced cell migration, and colony formation. Thus, the fabricated Palbociclib-loaded FA-conjugated lipid polymer hybrid nanoparticles could act as a potential nanocarrier for the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Polímeros/química , Neoplasias da Mama/tratamento farmacológico , Ácido Fólico/química , Sistemas de Liberação de Medicamentos/métodos , Apoptose , Nanopartículas/química , Lipídeos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Antineoplásicos/química
5.
Drug Deliv Transl Res ; 14(5): 1277-1300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37953430

RESUMO

Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3-4 fold, 6-7 fold, and 5-6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.


Assuntos
Neoplasias da Mama , Compostos Bicíclicos Heterocíclicos com Pontes , Nanopartículas , Sulfonamidas , Humanos , Feminino , Emulsões , Sistemas de Liberação de Medicamentos , Solubilidade , Tensoativos , Disponibilidade Biológica , Neoplasias da Mama/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Administração Oral , Tamanho da Partícula
6.
Biomed Chromatogr ; 38(4): e5815, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128133

RESUMO

The current research involved the development and validation of an easy, cost-effective, and sensitive bioanalytical reverse-phase high-performance liquid chromatography method for the assessment of palbociclib (PAL) in rat plasma and kidney, liver, spleen and heart. A response surface methodology-based Box-Behnken design was used to optimize critical chromatographic conditions such as buffer pH, organic phase concentration and flow rate to attain good sensitivity, tailing factor and retention time. The conditions were: pH of buffer, 4.5; organic phase concentration, 40%; Shimpac column with 1.0 ml/min flow rate. The responses were: tailing factor, 1.29 ± 0.03, sensitivity, 366,593 ± 8,592; and retention time, 4.5 ± 0.05 min. The samples were extracted by a protein precipitation method, and absolute recoveries were in the range of 88.99-95.08%. The linearity of the developed method was validated over the range 100-2,000 ng/ml (r2 ≥ 0.994) in all tested matrices. The developed bioanalytical method showed greater accuracy (0.98 and 4.01%) and precision (<4.88%). The method was optimized for the sensitive analysis of the PAL in rat plasma, and the kidney, liver, spleen and heart were effectively applied to pharmacokinetic studies.


Assuntos
Cromatografia de Fase Reversa , Piridinas , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Piperazinas/análise
7.
Int J Biol Macromol ; 258(Pt 1): 128821, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110163

RESUMO

Our main aim to design and develop a novel 4-carboxy phenyl boronic acid (4-CPBA) conjugated Palbociclib (PALB) loaded pH-sensitive chitosan lipid nanoparticles (PPCL) to enhance the anti-cancer efficacy of the PALB in in-vitro cell line studies by loading into 4-CPBA conjugated chitosan lipid nanoparticles. 4-CPBA was conjugated to chitosan by carbodiimide chemistry and formation of conjugate was confirmed by 1HNMR, ATR-FTIR spectroscopic techniques. Ionic-gelation method was used for the fabrication of PPCL and particles size, PDI, zeta potential were found to be 226.5 ± 4.3 nm, 0.271 ± 0.014 and 5.03 ± 0.42 mV. Presence of pH-sensitive biological macromolecule i.e. chitosan in the carrier system provides pH-sensitivity to PPCL and sustainedly released the drug upto 144 h. The PPCL exhibited approximately 7.2, 6.6, and 5-fold reduction in IC50 values than PALB in MCF-7, MDA-MB-231 and 4T1 cells. Receptor blocking assay concluded that the fabricated nanoparticles were internalized into MCF-7 cells might be through sialic acid-mediated endocytosis. PPCL caused extensive mitochondrial depolarization, enhanced ROS generation, apoptosis (DAPI nuclear staining, acridine orange/ ethidium bromide dual staining), and reduced % cell migration than pure PALB. It was concluded that the hybrid lipid-polymer nanoparticles provides an optimistic approach for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Lecitinas/química , Quitosana/química , Nanopartículas/química , Células MCF-7 , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Tamanho da Partícula
8.
AAPS PharmSciTech ; 24(8): 258, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097825

RESUMO

Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico , Ácido Poliglicólico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Portadores de Fármacos , Linhagem Celular Tumoral
9.
AAPS PharmSciTech ; 24(6): 157, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470885

RESUMO

Brinzolamide is an effective carbonic anhydrase inhibitor widely used in glaucoma therapy but limits its application due to inadequate aqueous solubility and permeability. The aim of the present research work is the development and characterization of brinzolamide-loaded ultradeformable bilosomes to enhance the corneal permeation of the drug. These ultradeformable bilosomes were prepared by ethanol injection method and evaluated for physicochemical properties, particle size, morphology, drug release, ultra-deformability, corneal permeation, and irritation potential. The optimized formulation exhibited an average particle size of 205.4 ± 2.04 nm with mono-dispersity (0.109 ± 0.002) and showed entrapment efficiency of 75.02 ± 0.017%, deformability index of 3.91, and release the drug in a sustained manner. The brinzolamide-loaded ultradeformable bilosomes released 76.29 ± 3.77% of the drug in 10 h that is 2.25 times higher than the free drug solution. The bilosomes were found non-irritant to eyes with a potential irritancy score of 0 in Hen's egg-chorioallantoic membrane assay. Brinzolamide-loaded ultradeformable bilosomes showed 83.09 ± 5.1% of permeation in 6 h and trans-corneal permeability of 8.78 ± 0.14 cm/h during the ex vivo permeation study. The acquired findings clearly revealed that the brinzolamide-loaded ultradeformable bilosomes show promising output and are useful in glaucoma therapy.


Assuntos
Inibidores da Anidrase Carbônica , Glaucoma , Animais , Feminino , Inibidores da Anidrase Carbônica/farmacologia , Galinhas , Córnea , Glaucoma/tratamento farmacológico , Tamanho da Partícula
10.
Int J Pharm ; 640: 123006, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37137420

RESUMO

Uveitis is a sight-threatening disease that causes inflammation in the uvea; difluprednate (DFB) is the first approved drug molecule for postoperative pain, inflammation, and endogenous uveitis. Complex ocular physiology and structure make it difficult to deliver drugs to the eye. Increased permeation and retention in the layer of the eye are required to improve the bioavailability of ocular drugs. In the current research investigation, DFB-loaded lipid polymer hybrid nanoparticles (LPHNPs) were designed and fabricated to enhance the corneal permeation and sustained release of DFB. A well-established two-step approach was used to fabricate the DFB-LPHNPs, comprising of Poly-Lactic-co-Glycolic Acid (PLGA) core that entrapped the DFB and DFB loaded PLGA NPs covered by lipid shell. The manufacturing parameters were optimized for the preparation of DFB-LPHNPs; the optimal DFB-LPHNPs showed a mean particle size of 117.3 ± 2.9 nm, suitable for ocular administration and high entrapment efficiency of 92.45 ± 2.17 % with neutral pH (7.18 ± 0.02) and isotonic Osmolality (301 ± 3 mOsm/kg). Microscopic examination confirms the core-shell morphological structure of DFB-LPHNPs. The prepared DFB-LPHNPs were extensively characterized using spectroscopic techniques and physicochemical characterization, which confirms the entrapment of the drug and the formation of the DFB-LPHNPs. The confocal laser scanning microscopy studies revealed that Rhodamine B-loaded LPHNPs were penetrated into stromal layers of the cornea in ex-vivo conditions. The DFB-LPHNPs showed a sustained release pattern in simulated tear fluid and 4- folds enhanced permeation of DFB as compared to pure DFB solution. The ex-vivo histopathological studies revealed that DFB-LPHNPs didn't cause any damage or no alteration in the cellular structure of the cornea. Additionally, the results of the HET-CAM assay confirmed that the DFB-LPHNPs were not toxic for ophthalmic administration.


Assuntos
Nanopartículas , Polímeros , Humanos , Preparações de Ação Retardada , Polímeros/química , Nanopartículas/química , Lipídeos/química , Inflamação , Tamanho da Partícula
11.
AAPS PharmSciTech ; 24(1): 26, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550259

RESUMO

Essential oils consist of oxygenated structures of secondary metabolites of aromatic plants with anti-psoriatic activities. Tea tree oil (TTO) is an essential oil with good anti-microbial and anti-inflammatory properties, exhibiting reduced levels of IL-1, IL-8, and PGE 2. Thymoquinone (TMQ) is popular herb in traditional medicine with known therapeutic benefits in several diseases and ailments. The ternary phase diagram was prepared with the weight ratio of Smix (Tween® 80:Labrasol®): oil:water ratio for o/w emulsion preparation. The globule size was 16.54 ± 0.13 nm, and PDI around 0.22 ± 0.01 of the TTO-TMQ emulsion and found thermodynamically stable. The percentage drug content was found in the range of 98.97 ± 0.62 to 99.45 ± 0.17% with uniformity of the ThymoGel using Carbopol®. The extensive physicochemical properties were studied using different analytical techniques, and in vitro drug release was performed using Franz-diffusion apparatus. Anti-psoriatic activity of the formulations was studied using Imiquimod-induced psoriasis-like inflammation model in male Balb/c mice and parameters like PASI score, ear thickness, and spleen to body weight index were determined as well as histological staining, ELISA, skin compliance, and safety evaluation of TTO were performed. The combination of essential oils with TMQ shows synergistic activity and efficiently reduces the psoriasis disease condition.


Assuntos
Óleos Voláteis , Psoríase , Óleo de Melaleuca , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Emulsões/química , Pele/metabolismo , Psoríase/metabolismo
12.
J Control Release ; 352: 1024-1047, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379278

RESUMO

Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Nanotecnologia , Polímeros/uso terapêutico , Portadores de Fármacos
13.
Pharm Res ; 39(11): 2761-2780, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171346

RESUMO

PURPOSE: Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein's expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored. METHODS: The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer). RESULTS: Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells. CONCLUSION: The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.


Assuntos
Neoplasias Pulmonares , Micelas , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis , Polímeros , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2 , Portadores de Fármacos , Vitamina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA