Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed J ; : 100703, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316392

RESUMO

Epigenetic machinery has emerged as a central player in gene regulation and chromatin organization in Plasmodium spp. Epigenetic modifications on histones and their role in antigenic variation in P. falciparum are widely studied. Recent discoveries on nucleic acid methylome are exciting and provide a new dimension to the apicomplexan protozoan parasite's gene regulatory process. Reports have confirmed that N6-methyl adenosine (m6A) methylation plays a crucial role in the translational plasticity of the human malaria parasite during its development in RBC. The YTH domain (YT521-B Homology) protein in P. falciparum binds to m6A epitranscriptome modifications on the mRNA and regulates protein translation. The binding of the PfYTH domain protein to the m6A-modified mRNA is mediated through a binding pocket formed by aromatic amino acids. The P. falciparum genome encodes two members of YTH domain proteins, i.e., YTH1 and YTH2, and both have distinct roles in dictating the epitranscriptome in human malaria parasites. This review highlights recent advancements in the functions and mechanisms of YTH domain protein's role in translational plasticity in the various developmental stages of the parasite.

2.
Chembiochem ; 25(4): e202300596, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078518

RESUMO

Plasmodium species adapt a complex lifecycle with multiple phenotypes to survive inside various cell types of humans and mosquitoes. Stage-specific gene expression in the developmental stages of parasites is tightly controlled in Plasmodium species; however, the underlying mechanisms have yet to be explored. Genome organization and gene expression for each stage of the malaria parasite need to be better characterized. Recent studies indicated that epigenetic modifications of histone proteins play a vital role in chromatin plasticity. Like other eukaryotes, Plasmodium species N-terminal tail modifications form a distinct "histone code," which creates the docking sites for histone reader proteins, including gene activator/repressor complexes, to regulate gene expression. The emerging research findings shed light on various unconventional epigenetic changes in histone proteins' core/globular domain regions, which might contribute to the chromatin organization in different developmental stages of the malaria parasite. The malaria parasite lost many transcription factors during evolution, and it is proposed that the nature of local chromatin structure essentially regulates the stage-specific gene expression. This review highlights recent discoveries of unconventional histone globular domain epigenetic modifications and their functions in regulating chromatin structure dynamics in various developmental stages of malaria parasites.


Assuntos
Malária Falciparum , Parasitos , Humanos , Animais , Cromatina/metabolismo , Histonas/metabolismo , Parasitos/genética , Parasitos/metabolismo , Código das Histonas , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Epigênese Genética , Fatores de Transcrição/metabolismo
3.
J Cell Mol Med ; 27(18): 2744-2755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37614064

RESUMO

27-hydroxycholesterol (27-HC) is a cholesterol metabolite and the first discovered endogenous selective estrogen receptor modulator (SERM) that has been shown to have proliferative and metastatic activity in breast cancer. However, whether 27-HC metabolite modulates the epigenetic signatures in breast cancer and its progression remains unclear. The current study, reports that 27-HC represses the expression of euchromatic histone lysine methyltransferase G9a, further reducing di-methylation at H3K9 in a subset of genes. We also observed reduced occupancy of ERα at the G9a promoter, indicating that 27-HC negatively regulates the ERα occupancy on the G9a promoter and functions as a transcriptional repressor. Further, ChIP-sequencing for the H3K9me2 mark has demonstrated that 27-HC treatment reduces the H3K9me2 mark on subset of genes linked to cancer progression, proliferation, and metastasis. We observed upregulation of these genes following 27-HC treatment which further confirms the loss of methylation at these genes. Immunohistochemical analysis with breast cancer patient tissues indicated a positive correlation between G9a expression and CYP7B1, a key enzyme of 27-HC catabolism. Overall, this study reports that 27-HC represses G9a expression via ERα and reduces the levels of H3K9me2 on a subset of genes, including the genes that aid in breast tumorigenesis and invasion further, increasing its expression in the breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Hidroxicolesteróis/farmacologia , Receptores de Estrogênio
4.
Cell Mol Biol Lett ; 28(1): 22, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934253

RESUMO

BACKGROUND: Cerebral arteriovenous malformations (cAVM) are a significant cause of intracranial hemorrhagic stroke and brain damage. The arteriovenous junctions in AVM nidus are known to have hemodynamic disturbances such as altered shear stress, which could lead to endothelial dysfunction. The molecular mechanisms coupling shear stress and endothelial dysfunction in cAVMs are poorly understood. We speculated that disturbed blood flow in artery-vein junctions activates Notch receptors and promotes endothelial mesenchymal plasticity during cAVM formation. METHODS: We investigated the expression profile of endothelial mesenchymal transition (EndMT) and cell adhesion markers, as well as activated Notch receptors, in 18 human cAVM samples and 15 control brain tissues, by quantitative real-time PCR (qRT-PCR) and immunohistochemical evaluation. Employing a combination of a microfluidic system, qRT-PCR, immunofluorescence, as well as invasion and inhibitor assays, the effects of various shear stress conditions on Notch-induced EndMT and invasive potential of human cerebral microvascular endothelial cells (hCMEC/d3) were analyzed. RESULTS: We found evidence for EndMT and enhanced expression of activated Notch intracellular domain (NICD3 and NICD4) in human AVM nidus samples. The expression of transmembrane adhesion receptor integrin α9/ß1 is significantly reduced in cAVM nidal vessels. Cell-cell adhesion proteins such as VE-cadherin and N-cadherin were differentially expressed in AVM nidus compared with control brain tissues. Using well-characterized hCMECs, we show that altered fluid shear stress steers Notch3 nuclear translocation and promotes SNAI1/2 expression and nuclear localization. Oscillatory flow downregulates integrin α9/ß1 and VE-cadherin expression, while N-cadherin expression and endothelial cell invasiveness are augmented. Gamma-secretase inhibitor RO4929097, and to a lesser level DAPT, prevent the mesenchymal transition and invasiveness of cerebral microvascular endothelial cells exposed to oscillatory fluid flow. CONCLUSIONS: Our study provides, for the first time, evidence for the role of oscillatory shear stress in mediating the EndMT process and dysregulated expression of cell adhesion molecules, especially multifunctional integrin α9/ß1 in human cAVM nidus. Concomitantly, our findings indicate the potential use of small-molecular inhibitors such as RO4929097 in the less-invasive therapeutic management of cAVMs.


Assuntos
Células Endoteliais , Malformações Arteriovenosas Intracranianas , Humanos , Células Endoteliais/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Receptores Notch/metabolismo , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal
5.
Biochimie ; 208: 66-74, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36528185

RESUMO

The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Fatores de Transcrição , Heterozigoto , Mutação , DNA
6.
Clin Epigenetics ; 14(1): 127, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229855

RESUMO

Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.


Assuntos
Metilação de DNA , Malformações Arteriovenosas Intracranianas , Cromatina , DNA , Hemodinâmica , Humanos , Malformações Arteriovenosas Intracranianas/complicações , Malformações Arteriovenosas Intracranianas/genética
7.
J Mol Biol ; 434(12): 167601, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35460670

RESUMO

Plasmodium falciparum expresses clonally variant proteins on the surface of infected erythrocytes to evade the host immune system. The clonally variant multigene families include var, rifin, and stevor, which express Erythrocyte Membrane Protein 1 (EMP1), Repetitive Interspersed Families of polypeptides (RIFINs), and Sub-telomeric Variable Open Reading frame (STEVOR) proteins, respectively. The rifins are the largest multigene family and are essentially involved in the RBC rosetting, the hallmark of severe malaria. The molecular regulators that control the RIFINs expression in Plasmodium spp. have not been reported so far. This study reports a chromodomain-containing protein (PfCDP) that binds to H3K9me3 modification on P. falciparum chromatin. Conditional deletion of the chromodomain (CD) gene in P. falciparum using an inducible DiCre-LoxP system leads to selective up-regulation of a subset of virulence genes, including rifins, a few var, and stevor genes. Further, we show that PfCDP conditional knockout (PfΔCDP) promotes RBC rosette formation. This study provides the first evidence of an epigenetic regulator mediated control on a subset of RIFINs expression and RBC rosetting by P. falciparum.


Assuntos
Epigênese Genética , Eritrócitos , Histonas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Formação de Roseta , Animais , Eritrócitos/imunologia , Eritrócitos/parasitologia , Deleção de Genes , Histonas/metabolismo , Malária Falciparum/parasitologia , Família Multigênica , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Virulência/genética
8.
Front Endocrinol (Lausanne) ; 13: 783823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360070

RESUMO

27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.


Assuntos
Neoplasias da Mama , Metilação de DNA , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Moduladores de Receptor Estrogênico , Feminino , Humanos , Hidroxicolesteróis/farmacologia , Microambiente Tumoral
9.
Mol Ther Oncolytics ; 23: 254-265, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34761105

RESUMO

Chandipura virus (CHPV) is an emerging human pathogen of great clinical significance. In this study, we have investigated the susceptibility pattern of both normal and cancer cell lines of human origin to wild-type (wt) CHPV in order to explore the possibility of developing CHPV as an oncolytic vector (OV). Marked cytopathic effect along with enhanced virus output was observed in cancer cell lines (HeLa, A549, U-138, PC-3, and HepG2) in comparison to normal human adult dermal fibroblast (HADF) cells. At an MOI of 0.1, cancer cell lines were differentially susceptible to CHPV, with cells like HeLa and U-138 having pronounced cell death, while the PC-3 were comparatively resistant. All cell lines used in the study except U-138 restricted CHPV infection to varying degrees with IFN-ß pre-treatment and supplementation of interferon (IFN) could neither activate the IFN signaling pathway in U-138 cells. Finally, U-138 tumor xenografts established in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice showed significant delay in tumor growth in the CHPV-challenged animals. Thus, targeted cytopathic effect in cancer cells at a very low dose with restricted replication in normal cells offers a rationale to exploit CHPV as an oncolytic vector in the future.

10.
Curr Res Microb Sci ; 2: 100079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725650

RESUMO

The emergence of COVID-19, caused by SARS-CoV-2 poses a significant threat to humans as it is highly contagious with increasing mortality. There exists a high degree of heterogeneity in the mortality rates of COVID-19 across the globe. There are multiple speculations on the varying degree of mortality. Still, all the clinical reports have indicated that preexisting chronic diseases like hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney disorders, and cardiovascular diseases are associated with the increased risk for high mortality in SARS-CoV-2 infected patients. It is worth noting that host factors, mainly epigenetic factors could play a significant role in deciding the outcome of COVID-19 diseases. Over the recent years, it is evident that chronic diseases are developed due to altered epigenome that includes a selective loss/gain of DNA and histone methylation on the chromatin of the cells. Since, there is a high positive correlation between chronic diseases and elevated mortality due to SARS-CoV-2, in this review; we discuss the overall picture of the aberrant epigenome map in varying chronic ailments and its implications in COVID-19 disease severity and high mortality.

12.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194744, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389510

RESUMO

The antigenic variation is an essential mechanism employed by the malaria parasite to establish a chronic infection in humans. Three major virulent proteins EMP1, RIFINs, and STEVOR have been implicated in contributing to the antigenic variation process and are encoded by multigene families in Plasmodium spp. The key virulence factor PfEMP1 is encoded by var genes, and it exhibits a mutually exclusive transcriptional switching between var genes, ensuring an individual parasite only transcribes a single var gene at a time. Expression of var genes is tightly regulated by two histone epigenetic methylation marks H3K36me3 and H3K9me3, of which the H3K36me3 mark is highly enriched on transcription start sites (TSSs) of suppressed var genes in P. falciparum. However, the mechanisms of H3K36me3 mark propagation on all the 59 var genes of P. falciparum are not known. Here, we have identified a PHD (Plant Homeodomain-like Domain) like domain present within the PfSET2 protein that specifically binds to the H3K36me2 mark, an intermediate product of the H3K36me3 mark formation on the nucleosome. Surprisingly, we have found that PHD - H3K36me2 interaction leads to stimulation of SET2 domain activity on the nucleosome substrates. The allosteric stimulation of the PfSET2 domain by PHD-like domain present within the same protein suggests a novel mechanism of H3K36me3 mark propagation on var genes of P. falciparum. This study proposes allosteric regulation of PfSET2 protein by H3K36me2 mark as an essential mechanism of var genes suppression to ensure successful antigenic variation by the malaria parasite.


Assuntos
Código das Histonas , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Regulação Alostérica , Metilação , Nucleossomos/enzimologia , Domínios Proteicos
13.
Biochim Biophys Acta Mol Cell Res ; 1868(9): 119079, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147559

RESUMO

The protein lysine methyltransferase, SMYD2 is involved in diverse cellular events by regulating protein functions through lysine methylation. Though several substrate proteins of SMYD2 are well-studied, only a limited number of its interaction partners have been identified and characterized. Here, we performed a yeast two-hybrid screening of SMYD2 and found that the ribosomal protein, eL21 could interact with SMYD2. SMYD2-eL21 interaction in the human cells was confirmed by immunoprecipitation methods. In vitro pull-down assays revealed that SMYD2 interacts with eL21 directly through its SET and MYND domain. Computational mapping, followed by experimental studies identified that Lys81 and Lys83 residues of eL21 are important for the SMYD2-eL21 interaction. Evolutionary analysis showed that these residues might have co-evolved with the emergence of SMYD2. We found that eL21 regulates the steady state levels of SMYD2 by promoting its transcription and inhibiting its proteasomal degradation. Importantly, SMYD2-eL21 interaction plays an important role in regulating cell proliferation and its dysregulation might lead to tumorigenesis. Our findings highlight a novel extra-ribosomal function of eL21 on regulating SMYD2 levels and imply that ribosomal proteins might regulate wide range of cellular functions through protein-protein interactions in addition to their core function in translation.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Ribossômicas/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Processamento de Proteína Pós-Traducional
14.
J Biol Chem ; 296: 100614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839154

RESUMO

Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.


Assuntos
Eritrócitos/parasitologia , Código das Histonas , Histonas/química , Lisina/química , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Nucleossomos/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética
15.
J Neuroinflammation ; 18(1): 61, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648532

RESUMO

BACKGROUND: Cerebral arterio venous malformations (AVM) are a major causal factor for intracranial hemorrhage, which result in permanent disability or death. The molecular mechanisms of AVM are complex, and their pathogenesis remains an enigma. Current research on cerebral AVM is focused on characterizing the molecular features of AVM nidus to elucidate the aberrant signaling pathways. The initial stimuli that lead to the development of AVM nidus structures between a dilated artery and a vein are however not known. METHODS: In order to understand the molecular basis of development of cerebral AVM, we used in-depth RNA sequencing with the total RNA isolated from cerebral AVM nidus. Immunoblot and qRT-PCR assays were used to study the differential gene expression in AVM nidus, and immunofluorescence staining was used to study the expression pattern of aberrant proteins in AVM nidus and control tissues. Immunohistochemistry was used to study the expression pattern of aberrant proteins in AVM nidus and control tissues. RESULTS: The transcriptome study has identified 38 differentially expressed genes in cerebral AVM nidus, of which 35 genes were upregulated and 3 genes were downregulated. A final modular analysis identified an upregulation of ALDH1A2, a key rate-limiting enzyme of retinoic acid signaling pathway. Further analysis revealed that CYR61, a regulator of angiogenesis, and the target gene for retinoic acid signaling is upregulated in AVM nidus. We observed that astrocytes associated with AVM nidus are abnormal with increased expression of GFAP and Vimentin. Triple immunofluorescence staining of the AVM nidus revealed that CYR61 was also overexpressed in the abnormal astrocytes associated with AVM tissue. CONCLUSION: Using high-throughput RNA sequencing analysis and immunostaining, we report deregulated expression of retinoic acid signaling genes in AVM nidus and its associated astrocytes and speculate that this might trigger the abnormal angiogenesis and the development of cerebral AVM in humans.


Assuntos
Fístula Arteriovenosa/metabolismo , Astrócitos/metabolismo , Regulação da Expressão Gênica , Malformações Arteriovenosas Intracranianas/metabolismo , Tretinoína/metabolismo , Feminino , Humanos , Masculino , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais
16.
Commun Biol ; 4(1): 109, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495566

RESUMO

Protein arginine methyltransferase 3 (PRMT3) regulates protein functions by introducing asymmetric dimethylation marks at the arginine residues in proteins. However, very little is known about the interaction partners of PRMT3 and their functional outcomes. Using yeast-two hybrid screening, we identified Retinal dehydrogenase 1 (ALDH1A1) as a potential interaction partner of PRMT3 and confirmed this interaction using different methods. ALDH1A1 regulates variety of cellular processes by catalyzing the conversion of retinaldehyde to retinoic acid. By molecular docking and site-directed mutagenesis, we identified the specific residues in the catalytic domain of PRMT3 that facilitate interaction with the C-terminal region of ALDH1A1. PRMT3 inhibits the enzymatic activity of ALDH1A1 and negatively regulates the expression of retinoic acid responsive genes in a methyltransferase activity independent manner. Our findings show that in addition to regulating protein functions by introducing methylation modifications, PRMT3 could also regulate global gene expression through protein-protein interactions.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Retinal Desidrogenase/metabolismo , Tretinoína/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligação Proteica , Proteína-Arginina N-Metiltransferases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
17.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376131

RESUMO

Protein arginine methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues in various proteins affecting diverse cellular processes such as transcriptional regulation, splicing, DNA repair, differentiation, and cell cycle. Elevated levels of PRMT5 are observed in several types of cancers and are associated with poor clinical outcomes, making PRMT5 an important diagnostic marker and/or therapeutic target for cancers. Here, using yeast two-hybrid screening, followed by immunoprecipitation and pull-down assays, we identify a previously uncharacterized protein, FAM47E, as an interaction partner of PRMT5. We report that FAM47E regulates steady-state levels of PRMT5 by affecting its stability through inhibition of its proteasomal degradation. Importantly, FAM47E enhances the chromatin association and histone methylation activity of PRMT5. The PRMT5-FAM47E interaction affects the regulation of PRMT5 target genes expression and colony-forming capacity of the cells. Taken together, we identify FAM47E as a protein regulator of PRMT5, which promotes the functions of this versatile enzyme. These findings imply that disruption of PRMT5-FAM47E interaction by small molecules might be an alternative strategy to attenuate the oncogenic function(s) of PRMT5.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido , Arginina/metabolismo , Proliferação de Células/genética , Cromatina/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Ligação Proteica , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/genética , Transfecção
18.
Epigenetics Chromatin ; 13(1): 33, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867812

RESUMO

BACKGROUND: Plasmodium falciparum exhibits high translational plasticity during its development in RBCs, yet the regulation at the post-transcriptional level is not well understood. The N6-methyl adenosine (m6A) is an important epigenetic modification primarily present on mRNA that controls the levels of transcripts and efficiency of translation in eukaryotes. Recently, the dynamics of m6A on mRNAs at all three developmental stages of P. falciparum in RBCs have been profiled; however, the proteins that regulate the m6A containing mRNAs in the parasites are unknown. RESULTS: Using sequence analysis, we computationally identified that the P. falciparum genome encodes two putative YTH (YT521-B Homology) domain-containing proteins, which could potentially bind to m6A containing mRNA. We developed a modified methylated RNA immunoprecipitation (MeRIP) assay using PfYTH2 and find that it binds selectively to m6A containing transcripts. The PfYTH2 has a conserved aromatic amino acid cage that forms the methyl-binding pocket. Through site-directed mutagenesis experiments and molecular dynamics simulations, we show that F98 residue is important for m6A binding on mRNA. Fluorescence depolarization assay confirmed that PfYTH2 binds to methylated RNA oligos with high affinity. Further, MeRIP sequencing data revealed that PfYTH2 has more permissive sequence specificity on target m6A containing mRNA than other known eukaryotic YTH proteins. Taken together, here we identify and characterize PfYTH2 as the major protein that could regulate m6A containing transcripts in P. falciparum. CONCLUSION: Plasmodium spp. lost the canonical m6A-specific demethylases in their genomes, however, the YTH domain-containing proteins seem to be retained. This study presents a possibility that the YTH proteins are involved in post-transcriptional control in P. falciparum, and might orchestrate the translation of mRNA in various developmental stages of P. falciparum. This is perhaps the first characterization of the methyl-reading function of YTH protein in any parasites.


Assuntos
Adenosina/análogos & derivados , Plasmodium falciparum/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Epigênese Genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética
20.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118611, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751593

RESUMO

Methylation of proteins is emerging to be an important regulator of protein function. SET7/9, a protein lysine methyltransferase, catalyses methylation of several proteins involved in diverse biological processes. SET7/9-mediated methylation often regulates the stability, sub-cellular localization and protein-protein interactions of its substrate proteins. Here, we aimed to identify novel biological processes regulated by SET7/9 by identifying new interaction partners. For this we used yeast two-hybrid screening and identified the large subunit ribosomal protein, eL42 as a potential interactor of SET7/9. We confirmed the SET7/9-eL42 interaction by co-immunoprecipitation and GST pulldown studies. The N-terminal MORN domain of SET7/9 is essential for its interaction with eL42. Importantly, we identified that SET7/9 methylates eL42 at three different lysines - Lys53, Lys80 and Lys100 through site-directed mutagenesis. By puromycin incorporation assay, we find that SET7/9-mediated methylation of eL42 affects global translation. This study identifies a new role of the functionally versatile SET7/9 lysine methyltransferase in the regulation of global protein synthesis.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Lisina/química , Metilação , Biossíntese de Proteínas , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA