Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 169(5): 513-22, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18439043

RESUMO

Prenatal exposure to low-dose radiation increases the risk of microcephaly and/or mental retardation. Microcephaly is also associated with genetic mutations that affect the non-homologous end-joining pathway of DNA double-strand break repair. To examine the link between these two causal factors, we characterized the neural developmental effects of acute radiation exposure in mouse littermate embryos harboring mutations in the Ku70 and p53 genes. Both low-dose radiation exposure and Ku70 deficiency induced morphologically indistinguishable cortical neuronal apoptosis. Irradiated Ku70-deficient embryos displayed anatomical damage indicative of increased radiosensitivity in the developing cerebral cortex. Deleting the p53 gene not only rescued cortical neuronal apoptosis at all levels but also restored the in vitro growth of Ku70-deficient embryonic fibroblasts despite the presence of unrepaired DNA/chromosomal breaks. The results confirm the role of DNA double-strand breaks as a common causative agent of apoptosis in the developing cerebral cortex. Furthermore, the findings suggest a disease mechanism by which the presence of endogenous DNA double-strand breaks in the newly generated cortical neurons becomes radiomimetic when DNA end joining is defective. This in turn activates p53-dependent neuronal apoptosis and leads to microcephaly and mental retardation.


Assuntos
Apoptose/efeitos da radiação , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Neurônios/metabolismo , Neurônios/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Cromossomos/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Autoantígeno Ku , Camundongos , Camundongos Knockout , Neurônios/citologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
2.
Breast Cancer Res ; 9(1): R1, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17201918

RESUMO

INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-kappaB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko) mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko) mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko) mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko) mammary tissues, but not that of IkappaB alpha expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFalpha treatment enhanced the level of the newly synthesized IkappaB alpha in SirT1(ko/ko) cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells.


Assuntos
Estrogênios/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Sirtuínas/fisiologia , Animais , Neoplasias da Mama/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Sirtuína 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA