RESUMO
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
RESUMO
The materials for water treatment have been evolving in multitude of dimensions, indicating the importance of water reuse and increasing level of water pollution around the globe. Among the various materials that are utilized in wastewater treatment, the material that has attracted the research community for the past decades is the metal organic framework (MOF). In this work one of the water stable and microporous MOF, UiO-66, and its aminated version has been employed to adsorb an anionic azo dye, direct blue-6 (DB-6), from the aqueous matrix. Performance of both the MOFs was compared to know the efficiency under varying solution conditions. The optimized parameters for DB-6 adsorption by UiO-66 was performed using response surface methodology. This numerical optimization was further extended with canonical and ridge analysis. Under optimal conditions, the materials were exhibiting a good adsorption capacity of 754.4 mg/g. The materials were analyzed in terms of morphology, crystallinity, thermal stability, and surface area using instruments like X-ray diffraction, electron microscopy, thermogravimetric analysis, and BET surface area analysis. The mechanism of interaction between UiO-66 and DB-6 molecule was elucidated with the help of XPS analysis which helps to know the main interacting group of UiO-66. This study was concluded with a phytotoxicity analysis of DB-6 and the antioxidant system of Vigna radiata assessed using pre and post adsorbed water.
Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Compostos AzoRESUMO
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug released into water bodies causing toxic biological effects on living organisms. The current study aims to eliminate IBU from aqueous solutions by a novel carboxymethylcellulose/polypyrrole (CMC/PPY) composite with high removal efficiency. Pyrrole was polymerized to polypyrrole whose average size was about 20 nm on the CMC surface. The maximum removal percentage of IBU by CMC/PPY composite was optimized at initial concentration 10 mg/L, dosage 0.02 g, and pH 7 with adsorption capacity of 72.30 (mg/g) and removal of 83.17 %. IBU adsorption onto CMC/PPY theoretically fits into the Langmuir isotherm and Elovich-kinetic models. Fish and Phytotoxicity assessment were performed with zebrafish and seeds of Vigna mungo (VM) and Vigna radiata (VR). The toxicity study reveals that before adsorption, IBU shows high toxicity towards the zebrafish mortality (33 %), growth inhibition (58.52 % for VM, 60.84 % for VR), and germination (86.66 % for VM and 90 % for VR). As CMC/PPY adsorbs IBU, toxicity drastically decreases. Before adsorption, LC50 was 233.02 mg/L. After adsorption, the LC50 increases to 2325.07 mg/L as IBU molecules get adsorbed by CMC/PPY. These findings show the feasibility of preparing CMC/PPY composite to effectively remove pharmaceutical pollutant IBU from aqueous solutions with their toxicological assessment.
Assuntos
Ibuprofeno , Poluentes Químicos da Água , Animais , Ibuprofeno/toxicidade , Ibuprofeno/química , Polímeros/toxicidade , Carboximetilcelulose Sódica/toxicidade , Carboximetilcelulose Sódica/química , Pirróis/toxicidade , Peixe-Zebra , Poluentes Químicos da Água/química , Adsorção , Água/química , Preparações FarmacêuticasRESUMO
The rise in pharmaceutical pollutants due to their unregulated discharge in pharmaceutical wastewater has landed them as emerging contaminants that would gradually affect the aquatic ecosystem and human life. The current study emphasizes the adsorptive elimination of one such emerging pharmaceutical pollutant, i.e., Diclofenac (DIF), using a synthesized adsorbent vis. Activated carbon-chitosan beads (ACCB). The morphological and physicochemical properties of the prepared adsorbent, ACCB and its interaction with the DIF species were investigated. Process parameters influencing the adsorptive interactions between ACCB and DIF were optimised. DIF was efficiently adsorbed at optimised initial DIF pH of 6.0 and ACCB dosage of 1.5 mg/mL at an incubation temperature of 40 °C. Freundlich isotherm model showed the best fit (R2 = 0.98) with the experimental data to conclude that the adsorbent surface is heterogenous, promoting multilayer adsorption. As depicted from the Langmuir isotherm model, the maximum theoretical adsorption capacity was 99.29 mg/g. The seed toxicity assay confirmed the efficacy of ACCB in the adsorptive removal of DIF species from aqueous setups, making the post-treated solution fit enough for seed germination.
Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Quitosana/química , Diclofenaco/química , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Cinética , Preparações Farmacêuticas , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
sawdust was valorized using acid-assisted hydrothermal carbonization and used in the removal of endocrine disruptor bisphenol A (BPA). The effect of acid addition on the hydrothermal carbonization of sawdust and removal of BPA was studied. Two different hydrochars were prepared using deionized water (HCD) and hydrochloric acid solution (HCAH) as feed water. The prepared hydrochars were characterized using FESEM, EDS, XRD, Raman spectroscopy, FTIR, TGA, and surface area analysis to study the structural and functional changes. Then they were compared in the removal of bisphenol A. Out of the two hydrochars prepared, acid-assisted hydrothermal carbonized hydrochar (HCAH) showed better removal efficiency. Hence, HCAH was used to study the influence of different parameters like pH, adsorbent dosage, and initial bisphenol A concentration by one variable at a time approach. Further, the study of interactive effects and optimization of adsorption of bisphenol A onto HCAH was carried out using RSM-CCD. The isotherm, kinetics, and thermodynamic studies revealed that the adsorption of bisphenol A could be explained by the Freundlich isotherm, pseudo-second-order kinetics fitted well in all the initial BPA concentrations, and the adsorption of bisphenol A onto HCAH was exothermic and spontaneous.
Assuntos
Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Concentração de Íons de Hidrogênio , Cinética , Minerais , Fenóis , Água , Poluentes Químicos da Água/análiseRESUMO
Electrocatalytic removal of fluroquinolones from simulated pharmaceutical effluent is studied in this work. The effects of parameters like NaCl concentration, pH and initial concentration of Ofloxacin were studied. The synergistic effect of H2O2 on the degradation of Ofloxacin paves the way to move towards radical based chemistry. The process was modelled and statistically evaluated through Central Composite Design approach towards the maximum concentration of Ofloxacin degraded (for 0.8 mM) as 0.46 mM at pH-3.0 and the concentration of H2O2 at 0.2 mM. The model was analyzed mathematically and observed as saddle response based on canonical and ridge analysis. The process follows pseudo first order kinetics with k = 0.047 min-1 and reaction rate of 13.6 mg.L-1.min-1. The mineralization efficiency of the process was studied using Total Organic Carbon analysis and 76.5% removal efficiency was obtained on the simulated pharmaceutical effluent containing Ofloxacin, Ciprofloxacin and Norfloxacin. The crystal structure of the green and red colour sludge was determined by XRD to be lepidocrocite (a = 3.87 Å, b = 12.4 Å, c = 3.06 Å) and gupeiite (a = 5.6620 Å), respectively. The elemental composition of sludge and electrodes were found using SEM-EDX. Morphological change in electrode surface was determined using roughness plot.
Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Esgotos , Poluentes Químicos da Água/análiseRESUMO
The novel COVID-19, a pandemic disease, is showing an alarming spread and severity throughout the world. Globally, the community transmission of this disease is affecting people in large clusters and so it is necessary to mitigate and control them in order to minimise the social and economic consequences. This review emphasize on the origin of the coronoviral epidemics, discussion on the structural and functional basis of SARS-CoV-2, epidemiology, pathognomonic symptoms, fatality, available rapid diagnostic methods and proposed possible treatment methods for the treatment of COVID-19. The diagnostic markers with respect to genetic material of the virus based on PCR, CRISPR & APTAMER and with respect to proteins based on Antigens were discussed which provides new arena for the development. In control of a pandemic situation the policy adoption and implementation by the governments plays a major role and the policy implementation in different countries are discussed which establishes the effectiveness of the policies framed by the governments. The effectiveness of ethnic traditional medicines of various countries such as India and China in Immunity enhancement, along with their utilisation is also discussed. This review provides an insights towards the COVID-19 which helps in continuous investigation on different dimensions which could help us to understand the mysteries behind the havoc created by this invisible creature.