Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873887

RESUMO

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.


Assuntos
Transição Epitelial-Mesenquimal , Crista Neural , Crista Neural/citologia , Animais , Camundongos , Análise de Célula Única
2.
J Exp Zool B Mol Dev Evol ; 342(3): 301-312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192038

RESUMO

In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of A. mexicanus have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the Astyanax liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived Astyanax cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured Astyanax cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in A. mexicanus and of vertebrates in general.


Assuntos
Técnicas de Cultura de Células , Characidae , Fígado , Esferoides Celulares , Transcriptoma , Animais , Characidae/genética , Characidae/metabolismo , Fígado/metabolismo , Fígado/citologia , Técnicas de Cultura de Células/métodos , Esferoides Celulares/metabolismo , Linhagem Celular , Cavernas
3.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961316

RESUMO

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation is a classic example of developmental EMT. An important feature of NCC development is their delamination from the neuroepithelium via EMT, following which NCC migrate throughout the embryo and undergo differentiation. NCC delamination shares similar changes in cellular state and structure with cancer cell invasion. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single cell RNA sequencing, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the progressive transcriptional and spatial transitions from premigratory to migratory cranial NCC during EMT and delamination. Of note gene expression and trajectory analysis indicate that distinct intermediate populations of NCC delaminate in either S phase or G2/M phase of the cell cycle, and the importance of cell cycle regulation in facilitating mammalian cranial NCC delamination was confirmed through cell cycle inhibition studies. Additionally, transcriptional knockdown revealed a functional role for the intermediate stage marker Dlc1 in regulating NCC delamination and migration. Overall, our work identifying and characterizing the intermediate cellular states, processes, and molecular signals that regulate mammalian NCC EMT and delamination furthers our understanding of developmental EMP and may provide new insights into mechanisms regulating pathological EMP.

4.
Alcohol Clin Exp Res (Hoboken) ; 47(8): 1467-1477, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369447

RESUMO

BACKGROUND: Alcohol (ethanol) consumption has different influences on arterial disease, being protective or harmful depending on the amount and pattern of consumption. The mechanisms mediating these biphasic effects are unknown. Whereas endothelial cells play a critical role in maintaining arterial health, this study compared the effects of moderate and high alcohol concentrations on endothelial cell function. METHODS: Human coronary artery endothelial cells (HCAEC) were treated with levels of ethanol associated with either low-risk/moderate drinking (i.e., 25 mM) or high-risk/heavy drinking (i.e., 50 mM) after which endothelial function was assessed. The effect of ethanol's primary metabolite acetaldehyde (10 and 25 µM) was also determined. RESULTS: Moderate ethanol exposure (25 mM) improved HCAEC barrier integrity as determined by increased transendothelial electrical resistance (TEER), inhibited cell adhesion molecule (CAM) mRNA expression, decreased inflammatory cytokine (interferon-γ and interleukin 6) production, inhibited monocyte chemotactic protein-1 (MCP-1) expression and monocyte adhesion, and increased homeostatic Notch signaling. In contrast, exposure to high-level ethanol (50 mM) decreased TEER, increased CAM expression and inflammatory cytokine production, and stimulated MCP-1 and monocyte adhesion, with no effect on Notch signaling. Reactive oxygen species (ROS) generation and endothelial nitric oxide synthase activity were increased by both alcohol treatments, and to a greater extent in the 50 mM ethanol group. Acetaldehyde-elicited responses were generally the same as those of the high-level ethanol group. CONCLUSIONS: Ethanol has biphasic effects on several endothelial functions such that a moderate level maintains the endothelium in a nonactivated state, whereas high-level ethanol causes endothelial dysfunction, as does acetaldehyde. These data show the importance of dose when considering ethanol's effects on arterial endothelium, and could explain, in part, the J-shaped relationship between alcohol concentration and atherosclerosis reported in some epidemiologic studies.

5.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333136

RESUMO

In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of Astyanax mexicanus have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the Astyanax liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, in order to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived Astyanax cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured Astyanax cells represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in Astyanax mexicanus and of vertebrates in general.

6.
Curr Protoc ; 3(4): e736, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37068186

RESUMO

The tetra fish species Astyanax mexicanus comprises two morphotypes: cavefish that live in caves and surface fish that inhabit rivers and lakes. Because cavefish have adapted to the nutrient-poor conditions in their habitat whereas the surface fish populations can be used as a proxy for the ancestral condition, this species has become a powerful model system for understanding genetic variation underlying metabolic adaptation. The liver plays a critical role in glucose and fat metabolism in the body and hence is an important tissue for studying altered metabolism in health and disease. Cavefish morphs of A. mexicanus have been shown to develop fatty livers and exhibit massive differences in gene expression and chromatin architecture. Primary cell lines from various tissues have become invaluable tools for biochemical, toxicology, and cell biology experiments, as well as genetic and genomic analyses. To enhance the utility of the model system by enabling an expanded set of biochemical and in vitro experiments, we developed protocols for the isolation and maintenance of primary liver cells from A. mexicanus surface fish and cavefish. We also describe methods that can be used for primary cell characterization, including cloning, characterization of cell growth pattern, and lentivirus transduction. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Primary culture of liver cells Support Protocol 1: Maintenance of A. mexicanus primary liver cells Support Protocol 2: Banking of A. mexicanus primary liver cells Support Protocol 3: Recovery of A. mexicanus primary liver cells Support Protocol 4: Primary liver cell cloning Support Protocol 5: Characterization of A. mexicanus primary liver cell growth pattern Basic Protocol 2: Lentiviral transduction of A. mexicanus primary liver cells.


Assuntos
Characidae , Animais , Characidae/genética , Genoma , Adaptação Fisiológica , Fígado
7.
Physiol Rep ; 11(1): e15544, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635975

RESUMO

Notch is important to vessel homeostasis. We investigated the mechanistic role of caveolin-1 (Cav-1) in mediating the effects of alcohol (Ethanol/EtOH) on the γ-secretase proteolytic activity necessary for Notch signaling in vascular cells. Human coronary artery endothelial cells (HCAEC) were treated with EtOH (0-50 mM), Notch ligand delta-like ligand 4 (Dll4), and the γ-secretase inhibitor DAPT. EtOH stimulated Notch signaling in HCAEC as evidenced by increased Notch receptor (N1, N4) and target gene (hrt2, hrt3) mRNA levels with the most robust response achieved at 25 mM EtOH. Ethanol (25 mM) stimulated γ-secretase proteolytic activity, to the same extent as Dll4, in HCAEC membranes. Ethanol inhibited Cav-1 mRNA and protein levels in HCAEC. Caveolin-1 negatively regulated γ-secretase activity in HCAEC as Cav-1 knockdown stimulated it, while Cav-1 overexpression inhibited it. Moreover, Cav-1 overexpression blocked the stimulatory effect of EtOH on γ-secretase activity in HCAEC. Although EtOH also inhibited Cav-1 expression in human coronary artery smooth muscle cells (HCASMC), EtOH inhibited γ-secretase activity in HCASMC in contrast to its effect in HCAEC. The inhibitory effect of EtOH on γ-secretase in HCASMC was mimicked by Cav-1 knockdown and prevented by Cav-1 overexpression, suggesting that in these cells Cav-1 positively regulates γ-secretase activity. In conclusion, EtOH differentially regulates γ-secretase activity in arterial EC and SMC, being stimulatory and inhibitory, respectively. These effects are both mediated by caveolin-1 inhibition which itself has opposite effects on γ-secretase in the two cell types. This mechanism may underlie, in part, the effects of moderate drinking on atherosclerosis.


Assuntos
Secretases da Proteína Precursora do Amiloide , Caveolina 1 , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Células Cultivadas , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Etanol/farmacologia , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo
8.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296460

RESUMO

Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Rubus , Óxido de Zinco , Humanos , Feminino , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo , Células MCF-7 , Rubus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citocromos c/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Acetona , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Extratos Vegetais/farmacologia
10.
Alcohol Clin Exp Res ; 45(11): 2217-2230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585422

RESUMO

BACKGROUND: Arterial endothelium plays a critical role in maintaining vessel homeostasis and preventing atherosclerotic cardiovascular disease (CVD). Low-to-moderate alcohol (EtOH) consumption is associated with reduced atherosclerosis and stimulates Notch signaling in endothelial cells. The aim of this study was to determine whether EtOH protects the endothelium against serum amyloid A1 (SAA1)-induced activation/injury, and to determine whether this protection is exclusively Notch-dependent. METHODS AND RESULTS: Human coronary artery endothelial cells (HCAEC) were stimulated or not with "pro-atherogenic" SAA1 (1 µM) in the absence or presence of EtOH (25 mM), the Notch ligand DLL4 (3 µg/ml), or the Notch inhibitor DAPT (20 µM). EtOH stimulated Notch signaling in HCAEC, as evidenced by increased expression of the Notch receptor and hrt target genes. Treatment with EtOH alone or stimulation of Notch signaling by DLL4 increased eNOS activity and enhanced HCAEC barrier function as assessed by trans-endothelial electrical resistance. Moreover, EtOH and DLL4 both inhibited SAA1-induced monolayer leakiness, cell adhesion molecule (ICAM, VCAM) expression, and monocyte adhesion. The effects of EtOH were Notch-dependent, as they were blocked with DAPT and by Notch receptor (N1, N4) knockdown. In contrast, EtOH's inhibition of SAA1-induced inflammatory cytokines (IL-6, IFN-γ) and reactive oxygen species (ROS) was Notch-independent, as these effects were unaffected by DAPT or by N1 and/or N4 knockdown. CONCLUSIONS: EtOH at moderate levels protects against SAA1-induced endothelial activation via both Notch-dependent and Notch-independent mechanisms. EtOH's maintenance of endothelium in a nonactivated state would be expected to preserve vessel homeostasis and protect against atherosclerosis development.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas Amiloidogênicas/metabolismo , Movimento Celular/efeitos dos fármacos , Vasos Coronários/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Etanol/farmacologia , Humanos , Substâncias Protetoras
11.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069558

RESUMO

Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size calculated from the Debye-Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs spherical in shape with clusters (1-100 nm). The antibacterial activity of the NPs was tested against Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and showed antibacterial activity.


Assuntos
Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Rubus/química , Óxido de Zinco/química , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
12.
Oxid Med Cell Longev ; 2021: 6667812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628374

RESUMO

Chemicals and signaling molecules released by injured cells at the beginning of wound healing prompt inflammation. In diabetes, prolonged inflammation is one of the probable causes for delayed wound healing. Increased levels of cyclooxygenase-2 (cox-2), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-α) are associated with the inflammatory response and in diabetes, and increased levels of these contribute to chronic wounds that do not heal. Rising levels of cox-2, IL-6, and TNF-α have also been associated with increased oxidative stress. Photobiomodulation (PBM) may impact wound healing processes by affecting the signaling pathways and molecules pertinent to tissue repair. In the present study, the effect of PBM (wavelength: 660 nm; energy density: 5 J/cm2) on levels of cox-2, IL-6, and TNF-α was determined in fibroblast cell culture models. Four WS1 models (normal, normal wounded, diabetic, and diabetic wounded) were irradiated at 660 nm, and the culture media was collected at 0, 24, and 48 h postirradiation. Cells that were not irradiated (0 J/cm2) served as the controls. The following parameters were determined postirradiation: cell morphology using light microscopy, cell viability using the Trypan Blue exclusion assay, and levels of the inflammatory markers cox-2, IL-6, and TNF-α were measured using ELISA. Cell migration increased in the wounded groups over the 48 h interval after PBM; viability improved postirradiation in the diabetic wounded groups at 0 and 24 h (P ≤ 0.05 and P ≤ 0.01, respectively); levels of cox-2 decreased in normal and diabetic wounded groups at 0 h (P ≤ 0.001) and increased in the diabetic and diabetic wounded groups at 48 h postirradiation (P ≤ 0.05 and P ≤ 0.01, respectively), while levels of IL-6 decreased in the normal (P ≤ 0.01), diabetic (P ≤ 0.05), and diabetic wounded (P ≤ 0.001) groups at 24 h and in the diabetic and diabetic wounded groups at 48 h (P ≤ 0.05) postirradiation. TNF-α was decreased in the normal wounded groups (P ≤ 0.05) at 48 h. Through its effect on decreased IL-6 levels in diabetic cell models, PBM at 660 nm may be successful at decreasing oxidative stress; however, the present study also found an increase in cox-2 levels at 48 h postirradiation.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Interleucina-6/metabolismo , Terapia com Luz de Baixa Intensidade , Fator de Necrose Tumoral alfa/metabolismo , Técnicas de Cultura de Células , Forma Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Humanos
13.
Oxid Med Cell Longev ; 2021: 6664627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505585

RESUMO

Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm2 and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2 and power density of 10.3 mW/cm2). Nonirradiated cells served as controls. Cell morphology and wound migration were determined using light microscopy. Cell viability was determined by the trypan blue exclusion assay. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of antioxidants (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1)). AKT activation and FOXO1 levels were determined by immunofluorescence and western blotting. The gaps (wound) in PBM-treated wounded and diabetic wounded cell models closed faster than the controls. PBM treatment significantly increased antioxidant levels in all cell models. This reflects that oxidative stress is reduced on the counterpart of increased antioxidant levels. This might be due to the activation of the AKT signaling pathway as evidenced by the increased AKT signals via western blotting and immunofluorescence. This data suggests that PBM promotes wound healing by increasing antioxidant levels by activating AKT signaling.


Assuntos
Diabetes Mellitus/terapia , Terapia com Luz de Baixa Intensidade/métodos , Células-Tronco Mesenquimais/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
14.
J Liposome Res ; 31(2): 203-216, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32396763

RESUMO

Here, the retinal targeting SA-g-AA coated multilamellar liposomes carrier synthesized to deliver the bioactive agents into the retinal region of the eye. The multilayered targeting macromolecules of liposomes prepared using a layer-by-layer assembly. The curcumin (CUR) and Rhodamine B (RhB) dyes loaded in a multilamellar vesicle (MLV) were synthesised by the lipid film hydration method. The sodium alginate grafted acrylic acid (SA-g-AA) conjugated with riboflavin (RB) was coated over MLV by O/W emulsion method followed by ionotropic gelation. FT-IR and 1H NMR spectroscopy techniques used to analyse the structural features of the MLV-SA-g-AA-RB. The results of DLS and TEM revealed that the carrier could be of uniform spheres, with a low polydispersity index, and outstanding performance in phrases of dye encapsulation and extended-release ability. An MTT assay investigated cell viability against Fibroblast WS1, and human embryonic stem cells-derived retinal pigment epithelial cells (hESC-RPE) implied that the carrier is of excellent biocompatibility. Retina targeting nature of the system confirmed via cellular uptake results revealed that the increases the dye concentration in the cells. Overall, the outcomes suggested that carriers could lead to the improvement of a feasible two photoreceptors targeting drug carriers, and it has the potential to deliver the multidrug in the retinal region of the eye.


Assuntos
Alginatos , Lipossomos , Acrilatos , Portadores de Fármacos , Humanos , Células Fotorreceptoras de Vertebrados , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Cell Commun Signal ; 15(2): 195-206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33052534

RESUMO

This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2, and power density of 10.3 mW/cm2). Non-irradiated cell models were used as controls. Cellular migration was determined at regular time intervals (0, 12, 24 and 48 h) using inverted light microscopy. Cell viability was determined by the Trypan blue exclusion assay. The levels of enzymic antioxidants superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1) were determined by the enzyme linked immunosorbent assay (ELISA). The alteration in the levels of AKT and FOXO1 was determined by immunofluorescence and western blotting. Upon PBM treatment, elevated oxidative stress was reversed in diabetic and diabetic wounded fibroblast cells. The reduced oxidative stress was represented by decreased FOXO1 levels and increased levels of SOD, CAT and HMOX1. This might be due to the activation of the AKT signaling pathway. This study concluded that treatment with PBM progressed diabetic wound healing by attenuating oxidative stress through inhibition of the FOXO1 signaling pathway.

16.
RSC Adv ; 10(61): 36989-37004, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521273

RESUMO

Solid-liquid nanocarriers (SLNs) are at the front of the rapidly emerging field of medicinal applications with a potential role in the delivery of bioactive agents. Here, we report a new SLN of natural deep eutectic solvent (NADES) and biotin-conjugated lysine-polyethylene glycol copolymer. The SLN system was analyzed for its functional groups, thermal stability, crystalline nature, particle size, and surface morphology through the instrumental analysis of FT-IR, TGA, XRD, DLS, SEM, and TEM. Encapsulation of PTX (paclitaxel) and 7-HC (7-hydroxycoumarin) with the SLN was carried out by dialysis, and UV-visible spectra evidenced the drug loading capacity and higher encapsulation efficiency obtained. The enhanced anticancer potential of PTX- and 7-HC-loaded SLN was assessed in vitro, and the system reduces the cell viability of MDA-MB-231 cells. The PTX- and 7-HC-loaded SLN system was investigated in a breast cancer-induced rat model via in vivo studies. It shows decreased lysosomal enzymes and increased levels of caspase to cure breast tumors. It very well may be reasoned that the designed PTX- and 7-HC-loaded SLN system has strong anticancer properties and exhibits potential for delivery of drug molecules in cancer treatment.

17.
Antioxidants (Basel) ; 8(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842333

RESUMO

Reactive oxygen species (ROS) are important secondary metabolites that play major roles in signaling pathways, with their levels often used as analytical tools to investigate various cellular scenarios. They potentially damage genetic material and facilitate tumorigenesis by inhibiting certain tumor suppressors. In diabetic conditions, substantial levels of ROS stimulate oxidative stress through specialized precursors and enzymatic activity, while minimum levels are required for proper wound healing. Photobiomodulation (PBM) uses light to stimulate cellular mechanisms and facilitate the removal of oxidative stress. Photodynamic therapy (PDT) generates ROS to induce selective tumor destruction. The regulatory roles of PBM via crosstalk between ROS and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) are substantial for the appropriate management of various conditions.

18.
Cell Biochem Funct ; 37(6): 432-442, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31318458

RESUMO

Advanced glycation end products (AGEs) are naturally occurring molecules that start to accumulate from embryonic developmental stages and form as part of normal ageing. When reducing sugars interact with and modify proteins or lipids, AGE production occurs. AGE formation accelerates in chronic hyperglycemic conditions, and high AGE levels have been associated with the pathogenesis of various diseases. In addition, enhanced levels of AGEs have been linked to delayed wound healing as seen in patients with diabetes mellitus. Research has provided numerous ways in which a high AGE concentration results in impaired wound healing, including oxidative stress, structural and functional changes to proteins important in wound repair, an enhanced inflammatory response by activation of transcription factors, and possible exaggerated apoptosis of cells necessary to the wound repair process. Apoptosis is a naturally occurring cell death process that is significant for normal tissue functioning and plays an important role in wound repair by preventing a prolonged inflammatory response and excessive scar formation. Abnormal apoptosis affects wound healing, resulting in slow healing wounds. This review will summarize the role of AGEs in wound healing, focusing on the mechanisms by which AGEs lead to apoptosis in various cell types. The review provides the way forward for medical research and molecular studies as it focuses on the mechanisms by which AGEs induce apoptosis in various cell types, including fibroblasts, osteoblasts, neuronal cells, and endothelial cells. Reviewing the mechanisms of AGE-linked apoptosis is important in understanding the impact of high AGE levels in delayed wound healing in diabetic patients due to abnormal apoptosis of cells necessary to the wound healing process.


Assuntos
Apoptose , Produtos Finais de Glicação Avançada/metabolismo , Cicatrização , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia
19.
Mater Sci Eng C Mater Biol Appl ; 100: 676-687, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948104

RESUMO

Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction. The chemical function and crystalline nature of the synthesized nanocarrier was characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction Analysis (XRD). The surface morphological study was carried out through Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The in-vitro drug release profile of DOX was carried out by UV-Vis spectrometer at the λmax value of 480 nm. The entrapment of DOX on GO-κ-car-biotin has been observed at 94%. The hydrophilic DOX drug has excellent pH-sensitive drug released in an in-vitro study. The anticancer efficiency of the synthesized GO-based nanocarrier was examined using HeLa cell line in-vitro. Cell viability, proliferation, cytotoxicity, and nuclear chromatin condensation was studied by trypan blue assay, triphosphate assay (ATP), lactate dehydrogenase assay (LDH) and Hoechst staining respectively. Finally, biotin leading GO-κ-Car carrier demonstrated is a promising drug delivery system for cervical cancer treatment.


Assuntos
Biotina/química , Carragenina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Grafite/química , Nanopartículas/química , Trifosfato de Adenosina/metabolismo , Carragenina/síntese química , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
20.
Biomed Pharmacother ; 110: 906-917, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572195

RESUMO

The adaptability, joint with a large surface area, electronic flexibility, high intrinsic mobility, high mechanical strength and supreme thermal conductivity have condensed graphene family materials attractive as technological tools of the drug delivery system. In this present study, investigate a modified graphene oxide-methyl acrylate (GO-g-MA) nanocarrier for targeted anti-cancer drug delivery in breast cancer cells and the GO-g-MA fascinated with folic acidas a targeting ligand to target the cancer cells. Paclitaxel (PTX) was assembled through π-π stacking, hydrophophic interaction on the surface of the GO-g-MA/FA carrier. Structural modification of GO-g-MA, functionalization of targeting ligands GO-g-MA/FA and drug loaded GO-g-MA/FA-PTX was characterized and confirmed through FTIR, XRD, SEM,TEM and AFM analysis. The in-vitro drug release pattern of PTX from the GO-g-MA/FA was examined in different pH ranges. An MTT assay was performed to evaluate the cytotoxicity behaviour of the carrier and PTX loaded nanocarrier in the human breast cancer cell line (MDA-MB-231). GO-g-MA/FA-PTX carrier showed that 39% of cytotoxic effect. Furthermore, the in-vivo (DMBA induced breast cancer rats) studies were carried out and treatment with PTX- loaded GO-g-MA/FA nanocarrier attenuates the levels of mitochondrial citric acids enzymes to near normal.


Assuntos
Acrilatos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Ácido Fólico/administração & dosagem , Grafite/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Acrilatos/síntese química , Acrilatos/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/metabolismo , Grafite/síntese química , Grafite/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Paclitaxel/síntese química , Paclitaxel/farmacocinética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA