Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(18): 3368-3384, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37665674

RESUMO

Protein drugs are used for treating many diseases of the eye and the brain. The formidable blood neural barriers prevent the delivery of these drugs into the eye and the brain. Hence, there is a need for a protein drug delivery system to deliver large proteins across blood-neural barriers. Low half-life, poor penetration of epithelial barriers, low stability, and immunogenicity limit the use of non-invasive systemic routes for delivering proteins. In this pre-clinical study, the efficacy of a new maxillofacial route for administering protein drugs using a novel drug delivery system is compared with systemic administration through intra-peritoneal injection and ocular administration through topical eye drops and subconjunctival and intravitreal injections. Bevacizumab and retinoschisin proteins were administered using the maxillofacial technique along with systemic and ocular routes in wild-type male C57BL/6J mice. Liquid chromatography with tandem mass spectrometry and western blot was used to detect bevacizumab in tissue samples. Furthermore, immunohistochemistry was performed to detect the presence and localization of bevacizumab and retinoschisin in the retina and brain. The maxillofacial route of delivery could target the brain including regions involved in the visual pathway and optic nerve. The maxillofacial technique and intravitreal injection were effective in delivering the drugs into the retina. A new concept based on the glymphatic pathway, cerebrospinal fluid drug distribution, and the crossover of ipsilateral optic nerve fibers at optic chiasma is proposed to explain the presence of the drug in contralateral eye following maxillofacial administration and intravitreal injection.


Assuntos
Nervo Óptico , Vias Visuais , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Bevacizumab , Encéfalo , Retina , Sistemas de Liberação de Medicamentos
2.
BMC Res Notes ; 14(1): 204, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039417

RESUMO

OBJECTIVE: Retinoschisis and Norrie disease are X-linked recessive retinal disorders caused by mutations in RS1 and NDP genes respectively. Both are likely to be monogenic and no locus heterogeneity has been reported. However, there are reports showing overlapping features of Norrie disease and retinoschisis in a NDP knock-out mouse model and also the involvement of both the genes in retinoschisis patients. Yet, the exact molecular relationships between the two disorders have still not been understood. The study investigated the association between retinoschisin (RS1) and norrin (NDP) using in vitro and in silico approaches. Specific protein-protein interaction between RS1 and NDP was analyzed in human retina by co-immunoprecipitation assay and MALDI-TOF mass spectrometry. STRING database was used to explore the functional relationship. RESULT: Co-immunoprecipitation demonstrated lack of a direct interaction between RS1 and NDP and was further substantiated by mass spectrometry. However, STRING revealed a potential indirect functional association between the two proteins. Progressively, our analyses indicate that FZD4 protein interactome via PLIN2 as well as the MAP kinase signaling pathway to be a likely link bridging the functional relationship between retinoschisis and Norrie disease.


Assuntos
Retinosquise , Animais , Cegueira/congênito , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Camundongos , Mutação , Doenças do Sistema Nervoso , Retina , Degeneração Retiniana , Retinosquise/genética , Espasmos Infantis
3.
ACS Omega ; 6(10): 7068-7072, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748620

RESUMO

Neurological manifestations have been reported in COVID-19; however, the route used by SARS-CoV-2 to enter the brain is still under debate. Recent studies have focused on the olfactory route. SARS-CoV-2 viral proteins were also detected in the glossopharyngeal and vagal nerves originating from the lower brainstem and in isolated cells of the brainstem. Our proof of concept in vivo real-time imaging study of mice using an indocyanine green dye indicated that the neurovascular component of the connective tissue of the respiratory mucosa can also provide an alternate route to the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA