Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 653-662, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367582

RESUMO

HYPOTHESIS: The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS: The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS: Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.

2.
Chemphyschem ; 24(23): e202300062, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37679310

RESUMO

Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.

3.
J Environ Manage ; 344: 118488, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393870

RESUMO

Mineral tailings dams pose high pollution risks to the environment and catastrophic failures. Dry stacking has been identified as a promising alternative to mitigate these risks and offers various benefits to the mining industry but lacks systematic research outcomes. To facilitate dry stacking, coal tailings slurries were dewatered using either filtration or centrifugation methods, resulting in a semi-solid form (cake) that can be safely disposed of. The handleability and disposability of these cakes are greatly influenced by the selection of chemical aids (such as polymer flocculants) and the mechanical dewatering technique employed. The effects of polyacrylamide (PAM) flocculants with a range of molecular weight, charge, and charge density are presented. Coal tailings samples with differences in clay mineralogy were dewatered using press filtration, solid bowl centrifugation, and natural air drying. Handleability and disposability of the tailings were assessed by their rheological properties, including yield stress, adhesive and cohesive stresses, and stickiness. Residue moisture, type of polymer flocculants, and clay mineralogy were found to be crucial factors affecting the handleability and disposability of the dewatered cakes. The tailing yield stress (shear strength) increased as the solid concentration increased. In the semi-solid regime (above 60 wt% solids), the tailings displayed stiff exponential growth. Similar trends were observed for stickiness and adhesive/cohesive energy of the tailings with a steel (truck) surface. Adding polymer flocculants increased the shear strength of the dewatered tailings by 10-15%, thus favouring disposability. However, the polymer selection for coal tailing handling and processing is a trade-off between its disposability and handleability, which requires a multi-criteria decision-making process. The current results also suggested that cationic PAM could be most suitable for dewatering by press filtration, while anionic PAM should be selected for dewatering by solid bowl centrifugation.


Assuntos
Carvão Mineral , Polímeros , Argila , Resistência ao Cisalhamento , Poluição Ambiental
4.
J Colloid Interface Sci ; 647: 152-162, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247479

RESUMO

HYPOTHESIS: Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS: Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS: Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA