Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21697, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027996

RESUMO

Globally, agriculture remains an important source of food and economic development. Due to various plant diseases, farmers continue to suffer huge yield losses in both quality and quantity. In this study, we explored the potential of using Artificial Neural Networks, K-Nearest Neighbors, Random Forest, and Support Vector Machine to classify tomato fungal leaf diseases: Alternaria, Curvularia, Helminthosporium, and Lasiodiplodi based on Gray Level Co-occurrence Matrix texture features. Small differences between symptoms of these diseases make it difficult to use the naked eye to obtain better results in detecting and distinguishing these diseases. The Artificial Neural Network outperformed other classifiers with an overall accuracy of 94% and average scores of 93.6% for Precision, 93.8% for Recall, and 93.8% for F1-score. Generally, the models confused samples originally belonging to Helminthosporium with Curvularia. The extracted texture features show great potential to classify the different tomato leaf fungal diseases. The results of this study show that texture characteristics of the Gray Level Co-occurrence Matrix play a critical role in the establishment of tomato leaf disease classification systems and can facilitate the implementation of preventive measures by farmers, resulting in enhanced yield quality and quantity.

2.
Foods ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201039

RESUMO

On a global scale, food safety and security aspects entail consideration throughout the farm-to-fork continuum, considering food's supply chain. Generally, the agrifood system is a multiplex network of interconnected features and processes, with a hard predictive rate, where maintaining the food's safety is an indispensable element and is part of the Sustainable Development Goals (SDGs). It has led the scientific community to develop advanced applied analytical methods, such as machine learning (ML) and deep learning (DL) techniques applied for assessing foodborne diseases. The main objective of this paper is to contribute to the development of the consensus version of ongoing research about the application of Artificial Intelligence (AI) tools in the domain of food-crop safety from an analytical point of view. Writing a comprehensive review for a more specific topic can also be challenging, especially when searching within the literature. To our knowledge, this review is the first to address this issue. This work consisted of conducting a unique and exhaustive study of the literature, using our TriScope Keywords-based Synthesis methodology. All available literature related to our topic was investigated according to our criteria of inclusion and exclusion. The final count of data papers was subject to deep reading and analysis to extract the necessary information to answer our research questions. Although many studies have been conducted, limited attention has been paid to outlining the applications of AI tools combined with analytical strategies for crop-based food safety specifically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA