Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109666, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38665206

RESUMO

Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins. Using seed mucilage secretory cells (MSCs) from Arabidopsis thaliana, we demonstrate the atypical localization of TBL38 restricted to a cell wall microdomain. A tbl38 mutant displays an intriguing homogalacturonan immunological phenotype in this cell wall microdomain and in an MSC surface-enriched abrasion powder. Mass spectrometry oligosaccharide profiling of this fraction reveals an increased homogalacturonan acetylation phenotype. Finally, TBL38 displays pectin acetylesterase activity in vitro. These results indicate that TBL38 is an atypical cell wall-localized TBL that displays a homogalacturonan acetylesterase activity rather than a Golgi-localized acetyltransferase activity as observed in previously studied TBLs. TBL38 function during seed development is discussed.

2.
Sci Data ; 10(1): 702, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838800

RESUMO

During Arabidopsis seed coat development, copious amounts of mucilage polysaccharides are produced in the epidermal cells. When hydrated on imbibition, these polysaccharides expand and are released to encapsulate the seed as a two-layered hydrogel. Polysaccharides are synthesized from UDP-sugars by glycosyltransferases (GTs) and several GTs, with differing activities, have been identified that contribute to mucilage polysaccharide synthesis. How these GTs orchestrate production of the complex polysaccharides found in mucilage remains to be determined. In this study, we generated a range of multiple GT mutants using either CRISPR/Cas9 targeted mutation or genetic crosses of existing T-DNA insertion mutants. Four traits for mucilage amounts or macromolecular properties were examined for four replicate seed lots from 31 different GT mutant combinations. This data provides a valuable resource for future genetic, biochemical, structural, and functional studies of the roles and properties of polysaccharides present in Arabidopsis mucilage and the relative contributions of different GTs to mucilage production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosiltransferases/genética , Mucilagem Vegetal/genética , Polissacarídeos
3.
Carbohydr Polym ; 291: 119599, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698346

RESUMO

Fibre bundles are groups of elementary fibres glued together thanks to the middle lamella, and are the main fraction in plant fibre composites. In this study, relationship between the mechanical properties of flax fibre bundles, chemical composition and cellulose structure were investigated. To do so, a sequential biopolymer extraction was implemented. Fibre bundles were first depectinated by oxalate extraction, and then the hemicelluloses were extracted by LiCl/dimethyl sulfoxide (DMSO) and KOH. The oxalate extract consisted of homogalacturonans and type I rhamnogalacturonans, while the LiCl extract was composed mainly of glucomannans and the KOH extract of xyloglucans. The KOH stage resulted in the appearance of cellulose II in flax bundles. The extraction of pectin and hemicelluloses led to the disappearance of the middle lamella concomitant with a decrease in the tensile Young's modulus and maximum strength. Finally, the fibre bundle composition, ultrastructure and mechanical properties are discussed together in view of the thin middle lamella.


Assuntos
Linho , Parede Celular/química , Celulose/química , Oxalatos , Polímeros/metabolismo
4.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160536

RESUMO

The instrumental analysis of complex mixtures of sugars often requires derivatization to enhance the method's selectivity and sensitivity. 1-Phenyl-3-methyl-5-pyrazolone (PMP) is a common sugar derivatization agent used in high-performance liquid chromatography (HPLC). Although many C18 column applications for PMP-sugar derivative analysis have been developed, their transferability is not straightforward due to variations in column chemistry and preparation technology. The aim of this study was to develop and validate an application for Zorbax Extend C18 columns for the analysis of 8 neutral and 2 acidic sugars commonly found in plant polysaccharides. The method was further compared to well-established alditol acetates and m-hydroxydiphenyl methods and employed for sugar profiling of selected agro-industrial wastes. The most influential separation factors were the mobile-phase pH and acetonitrile content, optimized at 8.0 and a 12-17% gradient, respectively. The method showed excellent linearity, repeatability and intermediate precision. High sensitivity was achieved, especially for neutral sugars, with an accuracy error range of 5-10% relative standard deviation. The sugar profiling results were highly correlated to the reference method for neutral sugars. The HPLC method was highly applicable for the evaluation of polysaccharides in selected wastes and showed advantages in terms of simplicity, accuracy in acidic sugar determination and suitability for their simultaneous analysis with neutral sugars.

5.
Cells ; 10(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34685527

RESUMO

The conjugation of sterols with a Glc moiety is catalyzed by sterol glucosyltransferases (SGTs). A portion of the resulting steryl glucosides (SG) are then esterified with a long-chain fatty acid to form acyl-SG (ASG). SG and ASG are prevalent components of plant cellular membranes and influence their organization and functional properties. Mutant analysis had previously inferred that two Arabidopsis SGTs, UGT80A2 and UGT80B1/TT15, could have specialized roles in the production of SG in seeds, despite an overlap in their enzymatic activity. Here, we establish new roles for both enzymes in the accumulation of polysaccharides in seed coat epidermal cells (SCEs). The rhamnogalacturonan-I (RG-I) content of the inner layer of seed mucilage was higher in ugt80A2, whereas RG-I accumulation was lower in mutants of UGT80B1, with double mutant phenotypes indicating that UGT80A2 acts independently from UGT80B1. In contrast, an additive phenotype was observed in double mutants for increased galactoglucomannan (GGM) content. Double mutants also exhibited increased polymer density within the inner mucilage layer. In contrast, cell wall defects were only observed in mutants defective for UGT80B1, while more mucilage cellulose was only observed when UGT80A2 was mutated. The generation of a range of phenotypic effects, simultaneously within a single cell type, demonstrates that the adjustment of the SG and ASG composition of cellular membranes by UGT80A2 and UGT80B1 tailors polysaccharide accumulation in Arabidopsis seeds.


Assuntos
Células Epidérmicas/metabolismo , Glucosiltransferases/metabolismo , Mananas/metabolismo , Polissacarídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Fenótipo
6.
Carbohydr Polym ; 263: 117932, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858566

RESUMO

According to the high interest in agro-industrial waste reutilisation, underutilised lignocellulosic materials, such as walnut shell (WS) and pea pod (PP), come in focus. The aim of this paper was to evaluate WS and PP as sources for the production of xylooligosaccharides (XOS). Hemicelluloses from WS and PP were recovered by combining varying parameters of delignification and alkaline extraction. At optimal recovery conditions, the fractions were further hydrolysed to XOS using GH11 endo-xylanase, by varying time and enzyme concentration. Xylose was predominant in the monomeric composition of the obtained hemicelluloses, building low-branched (arabino)glucuronoxylan, in WS exclusively, while in PP some xyloglucan as well. Delignification was essential for high recovery of total xylose from the materials, up to at least 70 %. High xylan conversions were obtained for 24 h hydrolysis, resulting in xylobiose and xylotriose when using low enzyme concentration, while in xylose and xylobiose with high enzyme concentration.


Assuntos
Fracionamento Químico/métodos , Glucuronatos/química , Juglans/química , Juglans/metabolismo , Oligossacarídeos/química , Pisum sativum/química , Pisum sativum/metabolismo , Glucuronatos/isolamento & purificação , Hidrólise , Juglans/anatomia & histologia , Oligossacarídeos/isolamento & purificação , Pisum sativum/anatomia & histologia , Extratos Vegetais/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Açúcares/análise , Xilanos/química , Xilanos/isolamento & purificação , Xilose/análise , Xilose/isolamento & purificação , Xilose/metabolismo
7.
Plant Physiol ; 185(3): 914-933, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793913

RESUMO

Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Pectinas/metabolismo , Ramnogalacturonanos/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
8.
Sci Data ; 8(1): 79, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750820

RESUMO

The seeds of Arabidopsis thaliana become encapsulated by a layer of mucilage when imbibed. This polysaccharide-rich hydrogel is constituted of two layers, an outer layer that can be easily extracted with water and an inner layer that must be examined in situ in order to study its properties and structure in a non-destructive manner or disintegrated through hydrolysis or physical means in order to analyze its constituents. Mucilage production is an adaptive trait and we have exploited 19 natural accessions previously found to have atypical and varied outer mucilage characteristics. A detailed study using biochemical, histological and Time-Domain NMR analyses has been used to generate three related datasets covering 33 traits measured in four biological replicates. This data will be a rich resource for genetic, biochemical, structural and functional analyses investigating mucilage constituent polysaccharides or their role as adaptive traits.


Assuntos
Arabidopsis/genética , Polissacarídeos/genética , Sementes/química , Regulação da Expressão Gênica de Plantas , Sementes/genética
9.
Plant Physiol ; 181(4): 1498-1518, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591153

RESUMO

On imbibition, Arabidopsis (Arabidopsis thaliana) seeds release polysaccharides from their epidermal cells that form a two-layered hydrogel, termed mucilage. Analysis of a publicly available data set of outer seed mucilage traits of over 300 accessions showed little natural variation in composition. This mucilage is almost exclusively made up of rhamnogalacturonan I (RGI), highlighting the importance of this pectin for outer mucilage function. In a genome-wide association study, observed variations in polymer amount and macromolecular characteristics were linked to several genome polymorphisms, indicating the complexity of their genetic regulation. Natural variants with high molar mass were associated with a gene encoding a putative glycosyltransferase called MUCILAGE-RELATED70 (MUCI70). muci70 insertion mutants produced many short RGI polymers that were highly substituted with xylan, confirming that polymorphism in this gene can affect RGI polymer size. A second gene encoding a putative copper amine oxidase of clade 1a (CuAOα1) was associated with natural variation in the amount of RGI present in the outer mucilage layer; cuaoα1 mutants validated its role in pectin production. As the mutant phenotype is unique, with RGI production only impaired for outer mucilage, this indicates that CuAOα1 contributes to a further mechanism controlling mucilage synthesis.


Assuntos
Arabidopsis/genética , Genes de Plantas , Variação Genética , Pectinas/genética , Mucilagem Vegetal/genética , Sementes/genética , Adaptação Fisiológica/genética , Amina Oxidase (contendo Cobre)/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biopolímeros/metabolismo , Celulose/metabolismo , Ecótipo , Estudo de Associação Genômica Ampla , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Anotação de Sequência Molecular , Mutação/genética , Pectinas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Xilanos/metabolismo
10.
AoB Plants ; 11(4): plz031, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31281620

RESUMO

Arabidopsis thaliana (Arabidopsis) seeds are myxospermous and release two layers of mucilage on imbibition. The outer layer can be extracted with water facilitating the analysis of its major constituent, polysaccharides. The composition and properties of outer mucilage have been determined for 306 natural accessions and six control genotypes to generate a data set comprising six traits measured in four biological replicates for each. Future exploitation of this data is possible in a range of analyses and should yield information concerning genetic diversity, underlying genetic factors and the biological function of mucilage as an adaptive trait.

11.
Plant Cell ; 31(4): 809-831, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852555

RESUMO

Cell-to-cell adhesion is essential for establishment of multicellularity. In plants, such adhesion is mediated through a middle lamella composed primarily of pectic polysaccharides. The molecular interactions that influence cell-to-cell adhesion are not fully understood. We have used Arabidopsis (Arabidopsis thaliana) seed coat mucilage as a model system to investigate interactions between cell wall carbohydrates. Using a forward-genetic approach, we have discovered a gene, RUBY PARTICLES IN MUCILAGE (RUBY), encoding a protein that is annotated as a member of the Auxiliary Activity 5 (AA5) family of Carbohydrate-Active Enzymes (Gal/glyoxal oxidases) and is secreted to the apoplast late in the differentiation of seed coat epidermal cells. We show that RUBY is required for the Gal oxidase activity of intact seeds; the oxidation of Gal in side-chains of rhamnogalacturonan-I (RG-I) present in mucilage-modified2 (mum2) mucilage, but not in wild-type mucilage; the retention of branched RG-I in the seed following extrusion; and the enhancement of cell-to-cell adhesion in the seed coat epidermis. These data support the hypothesis that RUBY is a Gal oxidase that strengthens pectin cohesion within the middle lamella, and possibly the mucilage of wild-type seed coat epidermal cells, through oxidation of RG-I Gal side-chains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Pectinas/metabolismo , Sementes/metabolismo , Galactose Oxidase/genética , Regulação da Expressão Gênica de Plantas/fisiologia
12.
Carbohydr Polym ; 203: 119-127, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318195

RESUMO

Rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II) domains were isolated from ginseng pectin by alkali saponification and endo-polygalacturonase hydrolysis, then purified by anion-exchange and size-exclusion chromatography. Monoclonal antibody detection indicated that ginseng RG-I contained →4)-α-GalpA-(1→2)-α-Rhap-(1→ repeating units as backbone, with arabinan, galactan and type II arabinogalactan (AG-II) as side chains. The use of galactose- and arabinose-releasing enzymes, mass spectrometry analysis of the oligosaccharides generated by rhamnogalacturonan hydrolase, and glycosidic linkage analyses provided evidence that ginseng RG-I contains both single galactose-branched subunits and highly branched subunits with arabinan and AG-II side chains. RG-II was analyzed by sequential acid hydrolysis followed by mass spectrometry. Ginseng RG-II contains 9 galacturonic acid units as backbone. Side chain A is an octasaccharide with 0 ∼ 1 methyl ether group. Side chain B is a nonasaccharide with 0 ∼ 1 acetyl group. These results provide useful information for further investigation of structure-activity relationship of ginseng pectin.


Assuntos
Panax/química , Pectinas/química , Arabinose/química , Sequência de Carboidratos , Cromatografia por Troca Iônica , Ensaio de Imunoadsorção Enzimática , Galactose/química , Glicosídeo Hidrolases/química , Hidrólise , Oligossacarídeos/química , Pectinas/isolamento & purificação
13.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255254

RESUMO

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Assuntos
Bacteroides/metabolismo , Colo/microbiologia , Dieta , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Genes Bacterianos/genética , Glicosídeo Hidrolases , Ácidos Hexurônicos , Humanos , Mutagênese Sítio-Dirigida , Células Vegetais/metabolismo
14.
Sci Rep ; 7(1): 9326, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839196

RESUMO

Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody production is based on using single antigens, however, there are significant gaps in the current repertoire of mAbs against some glycan targets with low immunogenicity. We approached mAb production in a different way and immunised with a complex mixture of polysaccharides. The multiplexed screening capability of carbohydrate microarrays was then exploited to deconvolute the specificities of individual mAbs. Using this strategy, we generated a set of novel mAbs, including one against starch (INCh1) and one against ulvan (INCh2). These polysaccharides are important storage and structural polymers respectively, but both are generally considered as having limited immunogenicity. INCh1 and INCh2 therefore represent important new molecular probes for Viridiplantae research. Moreover, since the α-(1-4)-glucan epitope recognised by INCh1 is also a component of glycogen, this mAb can also be used in mammalian systems. We describe the detailed characterisation of INCh1 and INCh2, and discuss the potential of a non-directed mass-screening approach for mAb production against some glycan targets.


Assuntos
Anticorpos Monoclonais/imunologia , Polissacarídeos/imunologia , Amido/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Epitopos/imunologia , Glicogênio/imunologia , Mamíferos , Plantas
15.
Nature ; 544(7648): 65-70, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329766

RESUMO

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.


Assuntos
Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/metabolismo , Biocatálise , Trato Gastrointestinal/microbiologia , Glicosídeo Hidrolases/metabolismo , Pectinas/química , Pectinas/metabolismo , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Boratos/química , Boratos/metabolismo , Domínio Catalítico , Microbioma Gastrointestinal , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Humanos , Modelos Moleculares , Especificidade por Substrato
17.
Front Plant Sci ; 7: 1073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524986

RESUMO

The plant cell wall is held together by the interactions between four major components: cellulose, pectin, hemicellulose, and proteins. Mucilage is a powerful model system to study the interactions between these components as it is formed of polysaccharides that are deposited in the apoplast of seed coat epidermal cells during seed development. When seeds are hydrated, these polysaccharides expand rapidly out of the apoplastic pocket, and form an adherent halo of mucilage around the seed. In Arabidopsis, mutations in multiple genes have similar loss of mucilage adherence phenotypes including CELLULOSE SYNTHASE 5 (CESA5)/MUCILAGE-MODIFIED 3 (MUM3), MUM5/MUCI21, SALT-OVERLY SENSITIVE 5 (SOS5), and FEI2. Here, we examine the interactions between these factors to better understand how they participate to control mucilage adherence. Double mutant phenotypes indicated that MUM5 and CESA5 function in a common mechanism that adheres pectin to the seed through the biosynthesis of cellulose and xylan, whereas SOS5 and FEI2, encoding a fasciclin-like arabinogalactan protein or a receptor-like kinase, respectively, function through an independent pathway. Cytological analyses of mucilage indicates that heteromannans are associated with cellulose, and not in the pathway involving SOS5 or FEI2. A SOS5 fluorescent protein fusion (SOS5-mCITRINE) was localized throughout the mucilage pocket, consistent with a structural role in pectin adhesion. The relationship between SOS5 and FEI2 mediated mucilage adherence was examined in more detail and while sos5 and fei2 mutants show similar phenotypes, key differences in the macromolecular characteristics and amounts of mucilage polymers were observed. FEI2 thus appears to have additional, as well as overlapping functions, with SOS5. Given that FEI2 is required for SOS5 function, we propose that FEI2 serves to localize SOS5 at the plasma membrane where it establishes interactions with mucilage polysaccharides, notably pectins, required for mucilage adherence prior to SOS5 being released into the apoplast.

18.
Plant Physiol ; 171(1): 165-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26979331

RESUMO

Arabidopsis (Arabidopsis thaliana) seed coat epidermal cells produce large amounts of mucilage that is released upon imbibition. This mucilage is structured into two domains: an outer diffuse layer that can be easily removed by agitation and an inner layer that remains attached to the outer seed coat. Both layers are composed primarily of pectic rhamnogalacturonan I (RG-I), the inner layer also containing rays of cellulose that extend from the top of each columella. Perturbation in cellulosic ray formation has systematically been associated with a redistribution of pectic mucilage from the inner to the outer layer, in agreement with cellulose-pectin interactions, the nature of which remained unknown. Here, by analyzing the outer layer composition of a series of mutant alleles, a tight proportionality of xylose, galacturonic acid, and rhamnose was evidenced, except for mucilage modified5-1 (mum5-1; a mutant showing a redistribution of mucilage pectin from the inner adherent layer to the outer soluble one), for which the rhamnose-xylose ratio was increased drastically. Biochemical and in vitro binding assay data demonstrated that xylan chains are attached to RG-I chains and mediate the adsorption of mucilage to cellulose microfibrils. mum5-1 mucilage exhibited very weak adsorption to cellulose. MUM5 was identified as a putative xylosyl transferase recently characterized as MUCI21. Together, these findings suggest that the binding affinity of xylose ramifications on RG-I to a cellulose scaffold is one of the factors involved in the formation of the adherent mucilage layer.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Celulose/metabolismo , Análise por Conglomerados , Genes de Plantas , Ligação Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ácidos Hexurônicos/metabolismo , Mutação , Pectinas/química , Pectinas/metabolismo , Extratos Vegetais/química , Mucilagem Vegetal/química , Ramnose/metabolismo , Sementes/enzimologia , Análise de Sequência de DNA , Coloração e Rotulagem , Xilanos/química , Xilose/metabolismo
19.
Int J Biol Macromol ; 81: 681-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342461

RESUMO

Pectin methylesterases (PMEs) play a central role in pectin remodeling during plant development. They are also present in phytopathogens such as bacteria and fungi. We investigated the substrate specificity and pH dependence of plant and fungi PMEs using tailor-made pectic substrates. For this purpose, we used two plant PMEs (from orange peel: Citrus sinensis and from Arabidopsis thaliana) and one fungal PME (from Botrytis cinerea). We showed that plant and fungi PMEs differed in their substrate specificity and pH dependence, and that there were some differences between plant PMEs. We further investigated the inhibition of these enzyme activities using characterized polyphenols such as catechins and tannic acid. We showed that PMEs differed in their sensitivity to chemical compounds. In particular, fungal PME was not sensitive to inhibition. Finally, we screened for novel chemical inhibitors of PMEs using a chemical library of ∼3600 compounds. We identified a hundred new inhibitors of plant PMEs, but none had an effect on the fungal enzyme. This study sheds new light on the specificity of pectin methylesterases and provides new tools to modulate their activity.


Assuntos
Hidrolases de Éster Carboxílico/química , Fungos/enzimologia , Plantas/enzimologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Polifenóis/farmacologia , Alinhamento de Sequência , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato
20.
Plant Cell Physiol ; 56(11): 2181-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384432

RESUMO

Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.


Assuntos
Parede Celular/química , Galactanos/imunologia , Pectinas/química , Animais , Daucus carota/química , Epitopos , Galactanos/análise , Camundongos , Raízes de Plantas/química , Raízes de Plantas/citologia , Polissacarídeos/análise , Solanum tuberosum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA