Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(8): 4431-4442, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031917

RESUMO

Assessment and preservation of biodiversity has been a central theme of conservation biology since the discipline's inception. However, when diversity estimates are based purely on measures of presence-absence, or even abundance, they do not directly assess in what way focal habitats support the life history needs of individual species making up biological communities. Here, we move beyond naïve measures of occurrence and introduce the concept of "informed diversity" indices which scale estimates of avian species richness and community assemblage by two critical phases of their life cycle: breeding and molt. We tested the validity of the "informed diversity" concept using bird capture data from multiple locations in northern California and southern Oregon to examine patterns of species richness among breeding, molting, and naïve (based solely on occurrence) bird communities at the landscape and local scales using linear regression, community similarity indices, and a Detrended Correspondence Analysis (DCA). At the landscape scale, we found a striking pattern of increased species richness for breeding, molting, and naïve bird communities further inland and at higher elevations throughout the study area. At the local scale, we found that some sites with species-rich naïve communities were in fact species-poor when informed by breeding status, indicating that naïve richness may mask more biologically meaningful patterns of diversity. We suggest that land managers use informed diversity estimates instead of naïve measures of diversity to identify ecologically valuable wildlife habitat.

2.
PeerJ ; 6: e5881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30595974

RESUMO

Birds found outside their typical range, or vagrants, have fascinated naturalists for decades. Despite broad interest in vagrancy, few attempts have been made to statistically examine the explanatory variables potentially responsible for the phenomenon. In this study, we used multiple linear regression to model the occurrence of 28 rare warbler species (family Parulidae) in autumn in northern California and southern Oregon as a function of migration distance, continental population size, distance, and bearing to both closest breeding population and breeding population center. In addition to our predictive model, we used capture data from the California coast to 300 km inland to examine relationships between the presence of vagrant warblers, regional warbler species richness and age class distribution. Our study yielded three important results: (1) vagrancy is strongly correlated with larger North American population size; (2) vagrants are more common at some coastal sites; and (3) where young birds are over-represented, vagrants tend to occur-such as on the coast and at far inland sites. Of the many explanations of rare and vagrant individuals, we feel that the most likely is that these birds represent the ends of the distributions of a normal curve of migration direction, bringing some few migrants to locations out of their normal migratory range as vagrants. We also examine the underrepresented species that, according to our model, are overdue for being recorded in our study area.

3.
Ecol Evol ; 7(19): 7750-7764, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043031

RESUMO

Migratory species employ a variety of strategies to meet energetic demands of postbreeding molt. As such, at least a few species of western Neotropical migrants are known to undergo short-distance upslope movements to locations where adults molt body and flight feathers (altitudinal molt migration). Given inherent difficulties in measuring subtle movements of birds occurring in western mountains, we believe that altitudinal molt migration may be a common yet poorly documented phenomenon. To examine prevalence of altitudinal molt migration, we used 29 years of bird capture data in a series of linear mixed-effect models for nine commonly captured species that breed in northern California and southern Oregon. Candidate models were formulated a priori to examine whether elevation and distance from the coast can be used to predict abundance of breeding and molting birds. Our results suggest that long-distance migrants such as Orange-crowned Warbler (Oreothlypis celata) moved higher in elevation and Audubon's Warbler (Setophaga coronata) moved farther inland to molt after breeding. Conversely, for resident and short-distance migrants, we found evidence that birds either remained on the breeding grounds until they finished molting, such as Song Sparrow (Melospiza melodia) or made small downslope movements, such as American Robin (Turdus migratorius). We conclude that altitudinal molt migration may be a common, variable, and complex behavior among western songbird communities and is related to other aspects of a species' natural history, such as migratory strategy.

4.
Ecology ; 98(11): 2885-2894, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28779523

RESUMO

Changes in climate can indirectly regulate populations at higher trophic levels by influencing the availability of food resources in the lower reaches of the food web. As such, species that rely on fruit and nectar food resources may be particularly sensitive to these bottom-up perturbations due to the strength of their trophic linkages with climatically-influenced plants. To measure the influence of climatically-mediated, bottom-up processes, we used climate, bird capture, bird count, and plant phenology data from the Big Island of Hawaii to construct a series of structural equation and abundance models. Our results suggest that fruit and nectar-eating birds arrange life cycle events around climatically-influenced food resources, while some of these same food resources also influence seasonal patterns of abundance. This trend was particularly strong for two native nectarivores, 'I'iwi and 'Apapane, where we found that the dissimilar timing of molting and breeding activity was associated with peak abundance of the two most common flowers at our study site which, in turn, were each driven by dissimilar climatic cues. Given the rapidly changing Hawaiian climate, we suggest that determining behavioral plasticity, or evolutionary capacity of birds to mitigate changes in climatically-influenced food resources, should be recognized as a future research priority.


Assuntos
Aves/fisiologia , Animais , Demografia , Cadeia Alimentar , Havaí , Plantas , Estações do Ano
5.
PLoS One ; 11(10): e0163906, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27732625

RESUMO

We examined avian community ecology in the Klamath Ecoregion and determined that individual bird species co-exist spatially to form 29 statistically distinguishable bird groups. We identified climate, geography, and vegetation metrics that are correlated with these 29 bird groups at three scales: Klamath Ecoregion, vegetation formation (agriculture, conifer, mixed conifer/hardwood, shrubland), and National Park Service unit. Two climate variables (breeding season mean temperature and temperature range) and one geography variable (elevation) were correlated at all scales, suggesting that for some vegetation formations and park units there is sufficient variation in climate and geography to be an important driver of bird communities, a level of variation we expected only at the broader scale. We found vegetation to be important at all scales, with coarse metrics (environmental site potential and existing vegetation formation) meaningful across all scales and structural vegetation patterns (e.g. succession, disturbance) important only at the scale of vegetation formation or park unit. Additionally, we examined how well six National Park Service units represent bird communities in the broader Klamath Ecoregion. Park units are inclusive of most bird communities with the exception of the oak woodland community; mature conifer forests are well represented, primarily associated with conifer canopy and lacking multi-layered structure. Identifying environmental factors that shape bird communities at three scales within this region is important; such insights can inform local and regional land management decisions necessary to ensure bird conservation in this globally significant region.


Assuntos
Aves/fisiologia , Agricultura , Animais , Biodiversidade , California , Clima , Análise por Conglomerados , Ecossistema , Florestas , Oregon
6.
Oecologia ; 178(3): 715-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25687831

RESUMO

The effects of habitat alteration and climatic instability have resulted in the loss of bird populations throughout the globe. Tropical birds in particular may be sensitive to climate and habitat change because of their niche specialization, often sedentary nature, and unique life-cycle phenologies. Despite the potential influence of habitat and climatic interactions on tropical birds, we lack comparisons of avian demographics from variably aged forests subject to different climatic phenomena. Here, we measured relationships between forest type and climatic perturbations on White-collared Manakin (Manacus candei), a frugivorous tropical bird, by using 12 years of capture data in young and mature forests in northeastern Costa Rica. We used Cormack-Jolly-Seber models and an analysis of deviance to contrast the influence of the El Niño Southern Oscillation (ENSO) on manakin survival. We found that ENSO had little effect on manakin survival in mature forests. Conversely, in young forests, ENSO explained 79% of the variation where dry El Niño events negatively influenced manikin survival. We believe mature forest mitigated negative effects of dry El Niño periods and can serve as refugia for some species by buffering birds from climatic instability. Our results represent the first published documentation that ENSO influences the survival of a resident Neotropic landbird.


Assuntos
Ecossistema , El Niño Oscilação Sul , Florestas , Passeriformes/fisiologia , Animais , Costa Rica , Humanos , Modelos Teóricos , Análise de Componente Principal , Clima Tropical
7.
PLoS One ; 9(1): e86221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489701

RESUMO

Nearctic-neotropic migrant birds need to replenish energy reserves during stopover periods to successfully complete their semiannual movements. In this study we used linear models to examine the habitat use of 11 migrant species in northeastern Costa Rica to better understand the influence of food and structural resources on the presence of birds during stopover periods. Our models indicated that frugivorous migrants primarily used food abundance, while insectivorous migrants chiefly used vegetation structure as cues for habitat use during stopover. In addition to habitat use models, we documented fruiting plant phenology and found a general relationship between migrant arrival and the timing of ripe fruit availability. Our results suggest that insectivorous migrants probably rely on structural features when using habitat because it may be inherently difficult to assess cryptic-arthropod availability during a short period of time in a novel habitat, such as stopover periods.


Assuntos
Aves/fisiologia , Ecossistema , Migração Animal/fisiologia , Animais , Costa Rica , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA