RESUMO
Drug resistance threatens the effective control of infections, including parasitic diseases such as leishmaniases. Neutrophils are essential players in antimicrobial control, but their role in drug-resistant infections is poorly understood. Here, we evaluated human neutrophil response to clinical parasite strains having distinct natural drug susceptibility. We found that Leishmania antimony drug resistance significantly altered the expression of neutrophil genes, some of them transcribed by specific neutrophil subsets. Infection with drug-resistant parasites increased the expression of detoxification pathways and reduced the production of cytokines. Among these, the chemokine CCL3 was predominantly impacted, which resulted in an impaired ability of neutrophils to attract myeloid cells. Moreover, decreased myeloid recruitment when CCL3 levels are reduced was confirmed by blocking CCL3 in a mouse model. Collectively, these findings reveal that the interplay between naturally drug-resistant parasites and neutrophils modulates the infected skin immune microenvironment, revealing a key role of neutrophils in drug resistance.
RESUMO
Background: Obtaining high quality RNA from skin biopsies is complex due the physical composition and high content of nucleases of this tissue. This becomes particularly challenging when using compromised skin samples with necrotic, inflammed or damaged areas, such as those from patients suffering skin conditions, which affect more than 900 million people annually. We evaluated the impact of the biopsy size and tissue preservation method on the quality and quantity of RNA extracts. Methods: Skin lesion biopsies were obtained from patients with cutaneous leishmaniasis (CL). Biopsy specimens of 2 mm (n = 10) and 3 mm (n = 59) were preserved in Allprotect® reagent, and 4 mm biopsies in OCT (n = 54). Quality parameters were evaluated using Nanodrop and Bioanalyzer. The informativeness of the extracted samples for downstream analyses was evaluated using RT-qPCR and RNA-Seq. Results: The success rate, based on quality parameters of RNA extraction from tissue biopsies stored in OCT and 2 mm biopsies stored in Allprotect®, was 56% (30/54) and 30% (3/10), respectively. For 3 mm skin biopsies stored in Allprotect® was 93% (55/59). RNA preparations from 3 mm-Allprotect® biopsies had an average RIN of 7.2 ± 0.7, and their integrity was not impacted by sample storage time (up to 200 days at -20°C). RNA products were appropriate for qRT-PCR and RNA-seq. Based on these results, we propose a standardized method for RNA extraction from disrupted skin samples. This protocol was validated with lesion biopsies from CL patients (n = 30), having a success rate of 100%. Conclusions: Our results indicate that a biopsy size of 3 mm in diameter and preservation in Allprotect® for up to 200 days at -20°C, are best to obtain high quality RNA preparations from ulcerated skin lesion biopsy samples.
RESUMO
Emerging evidence indicates that innate host response contributes to the therapeutic effect of antimicrobial medications. Recent studies have shown that Leishmania parasites derived by in vitro selection for resistance to pentavalent antimony (SbV) as meglumine antimoniate (MA) modulate the activation of neutrophils. However, whether modulation of neutrophil activation extends to natural resistance to this antileishmanial drug has not been established. We have evaluated the influence of clinical strains of L. (V.) panamensis having intrinsic tolerance/resistance to SbV, on the inflammatory response of neutrophils during ex vivo exposure to MA. Accordingly, neutrophils obtained from healthy donors were infected with clinical strains that are sensitive (n = 10) or intrinsically tolerant/resistant to SbV (n = 10) and exposed to a concentration approximating the maximal plasma concentration (Cmax) of SbV (32 µg/ml). The activation profile of neutrophils was evaluated as the expression of the surface membrane markers CD66b, CD18, and CD62L by flow cytometry, measurement of reactive oxygen species (ROS) by luminometry, and NET formation using Picogreen to measure dsDNA release and quantification of NETs by confocal microscopy. These parameters of activation were analyzed in relation with parasite susceptibility to SbV and exposure to MA. Here, we show that clinical strains presenting intrinsic tolerance/resistance to SbV induced significantly lower ROS production compared to drug-sensitive clinical strains, both in the presence and in the absence of MA. Likewise, analyses of surface membrane activation markers revealed significantly higher expression of CD62L on cells infected with intrinsically SbV tolerant/resistant L. (V.) panamensis than cells infected with drug-sensitive strains. Expression of other activation markers (CD18 and CD66b) and NET formation were similar for neutrophils infected with SbV sensitive and tolerant clinical strains under the conditions evaluated. Exposure to MA broadly impacted the activation of neutrophils, diminishing NET formation and the expression of CD62L, while augmenting ROS production and CD66b expression, independently of the parasite susceptibility phenotype. These results demonstrated that activation of human neutrophils ex vivo is differentially modulated by infection with clinical strains of L. (V.) panamensis having intrinsic tolerance/resistance to SbV compared to sensitive strains, and by exposure to antimonial drug.