Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1205511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426962

RESUMO

Understanding the spatial and temporal frameworks of species diversification is fundamental in evolutionary biology. Assessing the geographic origin and dispersal history of highly diverse lineages of rapid diversification can be hindered by the lack of appropriately sampled, resolved, and strongly supported phylogenetic contexts. The use of currently available cost-efficient sequencing strategies allows for the generation of a substantial amount of sequence data for dense taxonomic samplings, which together with well-curated geographic information and biogeographic models allow us to formally test the mode and tempo of dispersal events occurring in quick succession. Here, we assess the spatial and temporal frameworks for the origin and dispersal history of the expanded clade K, a highly diverse Tillandsia subgenus Tillandsia (Bromeliaceae, Poales) lineage hypothesized to have undergone a rapid radiation across the Neotropics. We assembled full plastomes from Hyb-Seq data for a dense taxon sampling of the expanded clade K plus a careful selection of outgroup species and used them to estimate a time- calibrated phylogenetic framework. This dated phylogenetic hypothesis was then used to perform biogeographic model tests and ancestral area reconstructions based on a comprehensive compilation of geographic information. The expanded clade K colonized North and Central America, specifically the Mexican transition zone and the Mesoamerican dominion, by long-distance dispersal from South America at least 4.86 Mya, when most of the Mexican highlands were already formed. Several dispersal events occurred subsequently northward to the southern Nearctic region, eastward to the Caribbean, and southward to the Pacific dominion during the last 2.8 Mya, a period characterized by pronounced climate fluctuations, derived from glacial-interglacial climate oscillations, and substantial volcanic activity, mainly in the Trans-Mexican Volcanic Belt. Our taxon sampling design allowed us to calibrate for the first time several nodes, not only within the expanded clade K focal group but also in other Tillandsioideae lineages. We expect that this dated phylogenetic framework will facilitate future macroevolutionary studies and provide reference age estimates to perform secondary calibrations for other Tillandsioideae lineages.

2.
Front Plant Sci ; 13: 924922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982706

RESUMO

Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits' rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.

3.
Physiol Plant ; 168(3): 547-562, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30136347

RESUMO

Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45-day acclimation, the plants were moved to a semi-controlled greenhouse at each site, and then subjected to a 20-day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv /Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.


Assuntos
Mudança Climática , Secas , Estresse Fisiológico , Tillandsia/fisiologia , Carbono/metabolismo , Fotossíntese , Água
4.
PhytoKeys ; 118: 105-123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914841

RESUMO

This study presents a list of species of the two most important families with epiphytic elements, Bromeliaceae and Orchidaceae, from the Reserva de la Biosfera Barranca de Metztitlán (RBBM), the largest Reserve in Hidalgo, Mexico. Thirty-four species are included, 26 corresponding to species in three genera of bromeliads, and eight species in six genera of orchids. The new records represent 26.5% of the total listed in the area; nine of them are new records for the Reserve (RBBM) and one is new for Hidalgo State. This study reveals that endemism for both families is very important in the Reserve (55.88%), since it includes 13 Mexican bromeliads, of which two are endemic to Hidalgo and one to the Reserve, and three orchids, two endemic to Mexico and one to the Reserve. We found species with different types of relative abundance: rare (16) and occasional (7). Additionally, we include information about the category (IUCN, CITES, NOM-059-SEMARNAT) as well as uses reported in the literature for the species in the RBBM. The checklist is strictly based on information obtained from deposited herbarium specimens as well as from those collected during fieldwork. We suggest that a conservation plan (in situ and ex situ) for the RBBM is important and necessary. The predominant habit for both families is epiphytic (17 species); even though there are terrestrial (7) and saxicolous (2), and the remaining are facultative species (8). Nine species are included in some risk category. The present work is the most complete and updated list of Bromeliaceae and Orchidaceae for this important natural area in the Mexican State of Hidalgo. However, more fieldwork is needed to document the biodiversity of the area in general and its flora in particular, as a way to highlight the importance of protected areas in preserving biodiversity.

5.
Rev Biol Trop ; 57(3): 761-70, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19928469

RESUMO

Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent.


Assuntos
Polinização/fisiologia , Tillandsia/fisiologia , Cruzamento , Flores/fisiologia , México , Estações do Ano
6.
Rev. biol. trop ; 57(3): 761-770, sep. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-637907

RESUMO

Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent. Rev. Biol. Trop. 57 (3): 761-770. Epub 2009 September 30.


Estudiamos la fenología floral y el sistema de cruzamiento de la bromelia Tillandsia streptophylla (Bromeliaceae) en una selva baja inundable en Yucatán, México. Durante la estación de floración (marzo a agosto), las plantas producen una inflorescencia terminal, escaposa, paniculada, 1-dividida, con una flor abriendo por rama por día para un período de floración de 11-29 días por inflorescencia. Las flores son tubulares, de corola violeta claro, con el estigma y anteras exertos, pero las anteras más largas que el estigma en antesis. Las flores son protandras, con las anteras liberando el polen desde las 0500 horas y la receptividad del estigma comenzando a las 0900 horas. Los cruces experimentales controlados sugieren que Tillansdia streptophylla es auto incompatible y por ende, dependiente de los polinizadores.


Assuntos
Polinização/fisiologia , Tillandsia/fisiologia , Cruzamento , Flores/fisiologia , México , Estações do Ano
7.
Rev. biol. trop ; 56(1): 279-289, mar. 2008.
Artigo em Inglês | LILACS | ID: lil-496374

RESUMO

Hechtia schottii is a terrestrial, rosetofilous, dioecious, polycarpic succulent herb, that grows mainly in shrubby associations, and less frequently, in secondary low caducifolious forests, both on calcareous soils or limestone outcrops in Yucatan and Campeche States, Mexico. We studied phenology, floral and pollination biology, and breeding system at Calcehtok, Yucatan, during two flowering seasons. Plants bloom mainly during the dry season (November-April) and disperse seeds during the rainy season (May-October). Both floral morphs have diurnal anthesis; pollen is removed ca. 1 h after anthesis starts and both floral morphs are visited by several insect species, especially bees, but results suggest that the introduced honey bee, Apis mellifera, is the pollinator. Controlled crossings show that the species is functionally dioecious and requires to be serviced by pollinators based on fruit setting only in unassisted cross pollination crosses.


Hechtia schottii es una hierba terrestre, suculenta, rosetófila, dioica y policárpica, que crece en asociaciones arbustivas y selva baja caducifolia secundaria, ambos en suelos calcáreos o limosos. Estudiamos la fenología, la biología floral, reproductiva y de la polinización en una población en Calcehtok, Yucatán, México, durante dos estaciones de floración. Las plantas florecen principalmente en la época de secas (noviembre-abril) y la dispersión de semillas es durante la estación de lluvias (mayo-octubre). Ambas formas (morphs) florales tienen antesis diurna; el polen es removido ca. 1 h después del comienzo de la antesis y ambas formas florales son visitadas por varias especies de insectos, especialmente abejas, pero los resultados sugieren que la abeja introducida, Apis mellifera, es el polinizador. Cruces controlados muestran que la especie es funcionalmente dioica y que requiere de un polinizador, ya que solo produce frutos por polinización no asistida entre formas.


Assuntos
Animais , Abelhas/fisiologia , Bromeliaceae/fisiologia , Flores/fisiologia , Polinização/fisiologia , Reprodução/fisiologia , Bromeliaceae/crescimento & desenvolvimento , Estações do Ano , Flores/crescimento & desenvolvimento , México , Cruzamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA