Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(10): 1056-1070, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782210

RESUMO

Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 µM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.


Assuntos
Júpiter , Ácidos Nucleicos , Exobiologia , Planeta Terra , Aminoácidos , Meio Ambiente Extraterreno/química
2.
ACS Omega ; 7(3): 2774-2785, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097274

RESUMO

Polyphenols are natural compounds with strong antioxidant properties synthesized by plants and widely distributed in plant tissues. They compose a broad class of compounds that are commonly employed for multiple applications such as food, pharmaceutical, adhesives, biomedical, agricultural, and industrial purposes. Runoffs from these sources result in the introduction of polyphenols into aquatic environments where they further transform into highly toxic pollutants that can negatively affect aquatic ecosystems and humans. Therefore, the development of extraction and remediation methods for such compounds must be addressed. This study describes the identification and operation of a method to recover polyphenolic compounds from water environments by utilizing membrane-based separation. Composite membranes derived from electrospun cellulose acetate (CA) fibers and diblock copolymer (DiBCP) PEO-b-P4VP were prepared to evaluate the adsorption of polyphenolic compounds from aqueous environments. The highly porous CA fibers were developed using the electrospinning technique, and the fabricated DiBCP/CA membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, and tensile testing. Finally, the ability of the composite membranes to adsorb the soluble polyphenolic compounds catechol (CAT) and gallic acid (GA), from a wetland environment, was studied via batch adsorption experiments and by solid-phase extraction (SPE). Results revealed a successful recovery of both polyphenols, at concentrations within the parts per million (ppm) range, from the aqueous media. This suggests a novel approach to recover these compounds to prevent their transformation into toxic pollutants upon entrance to water environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA