Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(19): 18623-18631, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854851

RESUMO

Thermal scanning-probe lithography (t-SPL) is a high-resolution nanolithography technique that enables the nanopatterning of thermosensitive materials by means of a heated silicon tip. It does not require alignment markers and gives the possibility to assess the morphology of the sample in a noninvasive way before, during, and after the patterning. In order to exploit t-SPL at its peak performances, the writing process requires applying an electric bias between the scanning hot tip and the sample, thereby restricting its application to conductive, optically opaque, substrates. In this work, we show a t-SPL-based method, enabling the noninvasive high-resolution nanolithography of photonic nanostructures onto optically transparent substrates across a broad-band visible and near-infrared spectral range. This was possible by intercalating an ultrathin transparent conductive oxide film between the dielectric substrate and the sacrificial patterning layer. This way, nanolithography performances comparable with those typically observed on conventional semiconductor substrates are achieved without significant changes of the optical response of the final sample. We validated this innovative nanolithography approach by engineering periodic arrays of plasmonic nanoantennas and showing the capability to tune their plasmonic response over a broad-band visible and near-infrared spectral range. The optical properties of the obtained systems make them promising candidates for the fabrication of hybrid plasmonic metasurfaces supported onto fragile low-dimensional materials, thus enabling a variety of applications in nanophotonics, sensing, and thermoplasmonics.

2.
J Phys Condens Matter ; 35(27)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996840

RESUMO

Hexagonal boron nitride (hBN), sometimes referred to as white graphene, receives growing interest in the scientific community, especially when combined into van der Waals (vdW) homo- and heterostacks, in which novel and interesting phenomena may arise. hBN is also commonly used in combination with two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs). The realization of hBN-encapsulated TMDC homo- and heterostacks can indeed offer opportunities to investigate and compare TMDC excitonic properties in various stacking configurations. In this work, we investigate the optical response at the micrometric scale of mono- and homo-bilayer WS2grown by chemical vapor deposition and encapsulated between two single layers of hBN. Imaging spectroscopic ellipsometry is exploited to extract the local dielectric functions across one single WS2flake and detect the evolution of excitonic spectral features from monolayer to bilayer regions. Exciton energies undergo a redshift by passing from hBN-encapsulated single layer to homo-bilayer WS2, as also confirmed by photoluminescence spectra. Our results can provide a reference for the study of the dielectric properties of more complex systems where hBN is combined with other 2D vdW materials into heterostructures and are stimulating towards the investigation of the optical response of other technologically-relevant heterostacks.

3.
J Phys Chem C Nanomater Interfaces ; 125(29): 16059-16065, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34484552

RESUMO

Excitons dominate the light absorption and re-emission spectra of monolayer transition-metal dichalcogenides (TMD). Microscopic investigations of the excitonic response in TMD almost invariably extract information from the radiative recombination step, which only constitutes one part of the picture. Here, by exploiting imaging spectroscopic ellipsometry (ISE), we investigate the spatial dependence of the dielectric function of chemical vapor deposition (CVD)-grown WS2 flakes with a microscopic lateral resolution, thus providing information about the spatially varying, exciton-induced light absorption in the monolayer WS2. Comparing the ISE results with imaging photoluminescence spectroscopy data, the presence of several correlated features was observed, along with the unexpected existence of a few uncorrelated characteristics. The latter demonstrates that the exciton-induced absorption and emission features are not always proportional at the microscopic scale. Microstructural modulations across the flakes, having a different influence on the absorption and re-emission of light, are deemed responsible for the effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA