Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 366: 548-566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211640

RESUMO

The lymphatic system possesses the main viral replication sites in the body following viral infection. Unfortunately, current antiretroviral agents penetrate the lymph nodes insufficiently when administered orally and, therefore, cannot access the lymphatic system sufficiently to interrupt this viral replication. For this reason, novel drug delivery systems aimed at enhancing the lymphatic uptake of antiretroviral drugs are highly desirable. Dissolving polymeric microarray patches (MAPs) may help to target the lymph intradermally. MAPs are intradermal drug delivery systems used to deliver many types of compounds. The present work describes a novel work investigating the lymphatic uptake of two anti-HIV drugs: cabotegravir (CAB) and rilpivirine (RPV) when delivered intradermally using dissolving MAPs containing nanocrystals of both drugs. Maps were formulated using NCs obtained by solvent-free milling technique. The polymers used to prepare the NCs of both drugs were PVA 10 Kda and PVP 58 Kda. Both NCs were submitted to the lyophilization process and reconstituted with deionized water to form the first layer of drug casting. Backing layers were developed for short application times and effective skin deposition. In vivo biodistribution profiles of RPV and CAB after MAP skin application were investigated and compared with the commercial intramuscular injection using rats. After a single application of RPV MAPs, a higher concentration of RPV was delivered to the axillary lymph nodes (AL) (Cmax 2466 ng/g - Tmax 3 days) when compared with RPV IM injection (18 ng/g - Tmax 1 day), while CAB MAPs delivered slightly lower amounts of drug to the AL (5808 ng/g in 3 days) when compared with CAB IM injection (9225 ng/g in 10 days). However, CAB MAPs delivered 7726 ng/g (Tmax 7 days) to the external lumbar lymph nodes, which was statistically equivalent to IM delivery (Cmax 8282 ng/g - Tmax 7 days). This work provides strong evidence that MAPs were able to enhance the delivery of CAB and RPV to the lymphatic system compared to the IM delivery route.


Assuntos
Dicetopiperazinas , Infecções por HIV , Piridonas , Rilpivirina , Animais , Ratos , Preparações Farmacêuticas , Distribuição Tecidual , Antirretrovirais , Polímeros
2.
Int J Pharm ; 640: 123005, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142137

RESUMO

HIV/AIDS remains a major global public health issue. While antiretroviral therapy is effective at reducing the viral load in the blood, up to 50% of those with HIV suffer from some degree of HIV-associated neurocognitive disorder, due to the presence of the blood-brain barrier restricting drugs from crossing into the central nervous system and treating the viral reservoir there. One way to circumvent this is the nose-to-brain pathway. This pathway can also be accessed via a facial intradermal injection. Certain parameters can increase delivery via this route, including using nanoparticles with a positive zeta potential and an effective diameter of 200 nm or less. Microneedle arrays offer a minimally invasive, pain-free alternative to traditional hypodermic injections. This study shows the formulation of nanocrystals of both rilpivirine (RPV) and cabotegravir, followed by incorporation into separate microneedle delivery systems for application to either side of the face. Following an in vivo study in rats, delivery to the brain was seen for both drugs. For RPV, a Cmax was seen at 21 days of 619.17 ± 73.32 ng/g, above that of recognised plasma IC90 levels, and potentially therapeutically relevant levels were maintained for 28 days. For CAB, a Cmax was seen at 28 days of 478.31 ± 320.86 ng/g, and while below recognised 4IC90 levels, does indicate that therapeutically relevant levels could be achieved by manipulating final microaaray patch size in humans.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Nanopartículas , Humanos , Ratos , Animais , Infecções por HIV/tratamento farmacológico , Rilpivirina/uso terapêutico , Transtornos Neurocognitivos/tratamento farmacológico , Piridonas
3.
J Pharm Biomed Anal ; 213: 114698, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35259714

RESUMO

The antiretroviral agents rilpivirine (RPV) and cabotegravir (CAB) are approved as a combined treatment regimen against human immunodeficiency virus (HIV). To fully understand the biodistribution of these agents and determine their concentration levels in various parts of the body, a simple, selective and sensitive bioanalytical method is essential. In the present study, a high performance liquid chromatography method with mass spectrometry detection (HPLC-MS) was developed for simultaneous detection and quantification of RPV and CAB in various biological matrices. These included plasma, skin, lymph nodes, vaginal tissue, liver, kidneys and spleen, harvested from female Sprague Dawley rats. The suitability of the developed method for each matrix was validated based on the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) on bioanalytical method validation. Analytes were extracted from biological samples employing a simple one-step protein precipitation method using acetonitrile. Samples were analysed using an Apex Scientific Inertsil ODS-3 column (4.6 mm × 250 mm, 5 µm particle size), maintained at 40 °C, on a HPLC system coupled with a single quadrupole MS detector. RPV was detected at a mass-to-charge ratio (m/z) of 367.4 and CAB at 406.3. Separation was achieved using isocratic elution at 0.3 mL/min with a mixture of acetonitrile and 0.1% (v/v) trifluoroacetic acid in water (81:19, v/v) as the mobile phase. The run time was set at 13 min. The presented method was selective, sensitive, accurate and precise for detection and quantification of RPV and CAB in all matrices. The developed and validated bioanalytical method was successfully employed for in vivo samples with both drugs simultaneously.


Assuntos
Antirretrovirais , Rilpivirina , Animais , Antirretrovirais/análise , Antirretrovirais/sangue , Cromatografia Líquida de Alta Pressão/métodos , Dicetopiperazinas , Feminino , Preparações Farmacêuticas , Piridonas , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Rilpivirina/análise , Rilpivirina/sangue , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
4.
Adv Drug Deliv Rev ; 173: 331-348, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831475

RESUMO

Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticoncepcionais Femininos/farmacologia , Infecções por HIV/prevenção & controle , HIV/efeitos dos fármacos , Análise em Microsséries , Sistemas de Liberação de Medicamentos , Feminino , Humanos
5.
Micromachines (Basel) ; 11(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486123

RESUMO

The focus on novel systems for transdermal delivery of therapeutic agents has increased considerably over recent years, as this administration route comes with many advantages. Polymeric microarray patches (MAPs) are minimally invasive devices that enable systemic delivery of a wide range of drugs by overcoming the outer skin barrier. Conventionally, MAPs fabricated by micromoulding have a low needle density. In this study, the performance of hydrogel-forming MAPs cast using novel industrially manufactured micromoulds with a high needle density (600 needles/0.75 cm2) was compared to that of MAPs obtained using conventional moulds with a lower density (196 needles/0.89 cm2). Surrounding holders for micromoulds were designed for time-efficient fabrication of MAPs. The influence of needle densities on mechanical strength, insertion efficiency and in vitro permeation of ibuprofen sodium (IBU) was analysed. Insertion of both MAPs into an artificial skin model and neonatal porcine skin was comparable. No significant difference was observed in permeation studies of IBU (p > 0.05), with a delivery of 8.7 ± 1.7 mg for low-density and 9.5 ± 0.1 mg for high-density MAPs within 24 h. This highlights the potential of these novel micromoulds for manufacturing polymeric MAPs with a higher needle density for future applications.

6.
Int J Pharm ; 566: 299-306, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150773

RESUMO

Vitamin B12 plays an essential role in one-carbon metabolism in the human body. A deficiency in this vitamin can lead to severe haematopoietic and neuropsychiatric disorders and is currently treated by oral or parenteral administration of exogenous vitamin. Unfortunately, the absorption of orally taken vitamin B12 is low and highly variable, while injections can cause pain and anxiety. Thus, an efficient alternative drug delivery system for overcoming these shortcomings is highly desirable. Novel polymeric microneedle (MN) arrays have the potential for minimally invasive transdermal treatment of vitamin B12 deficiency. Bilayer dissolving MN arrays (19 × 19 needles, 600 µm height) containing 135 µg vitamin B12 were cast using two different aqueous polymer blends. MN arrays showed sufficient mechanical strength for skin insertion, dissolved rapidly and delivered 72.92% of their drug load in vitro over 5 h. Ultimately, the potential of delivering a therapeutically relevant dose of vitamin B12 transdermally was demonstrated in vivo in Sprague-Dawley rats by comparison to subcutaneous injections. Maximum plasma levels of 0.37 µg/mL occurred 30 min post-MN application, highlighting the ability of fabricated MN arrays to rapidly deliver vitamin B12 transdermally.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções , Agulhas , Vitamina B 12/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Administração Cutânea , Animais , Feminino , Povidona/administração & dosagem , Povidona/farmacocinética , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea , Suínos , Vitamina B 12/sangue , Vitamina B 12/farmacocinética , Complexo Vitamínico B/sangue , Complexo Vitamínico B/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA