Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4284, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769304

RESUMO

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.


Assuntos
Adenosina , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Homozigoto , Metiltransferases , Mutação de Sentido Incorreto , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de RNA , Proteínas do Tecido Nervoso
2.
Front Physiol ; 15: 1371096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694206

RESUMO

Introduction: The Aster-C protein (encoded by the Gramd1c gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions. Method: Age-matched Gramd1c +/+ and Gramd1c -/- mice were fed either low (0.02%, wt/wt) or high (0.2%, wt/wt) dietarycholesterol and levels of sterol-derived metabolites were assessed in the feces, liver, and plasma. Results: Compared to wild type controls (Gramd1c +/+) mice, mice lackingGramd1c (Gramd1c -/-) have no significant alterations in fecal, liver, or plasma cholesterol. Given the potential role for Aster C in modulating cholesterol metabolism in diverse tissues, we quantified levels of cholesterol metabolites such as bile acids, oxysterols, and steroid hormones. Compared to Gramd1c +/+ controls, Gramd1c -/- mice had modestly reduced levels of select bile acid species and elevated cortisol levels, only under low dietary cholesterol conditions. However, the vast majority of bile acids, oxysterols, and steroid hormones were unaltered in Gramd1c -/- mice. Bulk RNA sequencing in the liver showed that Gramd1c -/- mice did not exhibit alterations in sterol-sensitive genes, but instead showed altered expression of genes in major urinary protein and cytochrome P450 (CYP) families only under low dietary cholesterol conditions. Discussion: Collectively, these data indicate nominal effects of Aster-C on whole body cholesterol transport and metabolism under divergent dietary cholesterol conditions. These results strongly suggest that Aster-C alone is not sufficient to control whole body cholesterol balance, but can modestly impact circulating cortisol and bile acid levels when dietary cholesterol is limited.

3.
Elife ; 122024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648183

RESUMO

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Assuntos
Aciltransferases , Homeostase , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Lisossomos , Proteínas de Membrana , Animais , Humanos , Masculino , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/genética , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
RNA Biol ; 20(1): 737-749, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702393

RESUMO

Adiponectin, an adipocyte-specific secretory protein encoded by the ADIPOQ gene has a causal role in insulin resistance. Anti-diabetic drugs increase plasma adiponectin by a poorly understood, post-transcriptional mechanism enhancing insulin sensitivity. Deletion analysis of a reporter bearing the mouse Adipoq mRNA 5'-leader identified an inhibitory cis-regulatory sequence. The 5'-leader harbours two potential upstream open reading frames (uORFs) overlapping the principal downstream ORF. Mutation of the uORF ATGs increased reporter translation ~3-fold, indicative of a functional uORF. uORFs are common in mammalian mRNAs; however, only a select group resist translational repression by the integrated stress response (ISR). Thapsigargin (TG), which induces endoplasmic reticulum (ER) stress and the ISR, enhanced expression of a reporter bearing the Adipoq 5'-leader; polysome profiling verified translation-stimulation. TG-stimulated translation was absent in cells defective in Ser51 phosphorylation of eukaryotic initiation factor 2α (eIF2α), required for the ISR. To determine its role in expression and function of endogenous adiponectin, the upstream uORF was disrupted by CRISPR-Cas9-mediated mutagenesis of differentiated mouse 3T3-L1 adipocytes. uORF disruption in adipocytes increased adiponectin expression, triacylglycerol accumulation, and glucose uptake, and inhibited paracrine muscle and liver cell expression of gluconeogenic enzymes, establishing an important role of the uORF in adiponectin-mediated responses to stress.


Assuntos
Adipócitos , Adiponectina , Animais , Camundongos , Adiponectina/genética , Fases de Leitura Aberta , Células 3T3-L1 , Transporte Biológico , Mamíferos
5.
Cell Rep ; 42(9): 113023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691145

RESUMO

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.


Assuntos
Ferroptose , Fosfatidilinositóis , Linhagem Celular , Ácidos Graxos Insaturados , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Humanos
6.
Nat Commun ; 14(1): 3385, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296097

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.


Assuntos
RNA Viral , Regulon , SARS-CoV-2 , RNA Subgenômico , Humanos , COVID-19/genética , Regulon/genética , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , RNA Subgenômico/genética
7.
NAR Genom Bioinform ; 4(4): lqac076, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267124

RESUMO

Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, 'alt-proteins' lack sequence homology with host ORF-derived proteins. We show global amino acid frequencies, and consequent biochemical characteristics of Alt-ORFs nested within host ORFs (nAlt-ORFs), are genetically-driven, and predicted by summation of frequencies of hundreds of encompassing host codon-pairs. Analysis of 101 human nAlt-ORFs of length ≥150 codons confirms the theoretical predictions, revealing an extraordinarily high median isoelectric point (pI) of 11.68, due to anomalous charged amino acid levels. Also, nAlt-ORF proteins exhibit a >2-fold preference for reading frame 2 versus 3, predicted mitochondrial and nuclear localization, and elevated codon adaptation index indicative of natural selection. Our results provide a theoretical and conceptual framework for exploration of these largely unannotated, but potentially significant, alternative ORFs and their encoded proteins.

8.
iScience ; 24(3): 102215, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748704

RESUMO

Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn2+-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS). We developed GluProRS mutant mice by CRISPR-Cas9 with a deletion of 29 C-terminal amino acids, including two of four Zn2+-coordinating cysteines. Homozygous ZBD mutant mice die before embryonic day 12.5, but heterozygous mice are healthy. ZBD disruption profoundly reduces GluProRS canonical function by dual mechanisms: it induces rapid proteasomal degradation of the protein and inhibits ProRS aminoacylation activity, likely by sub-optimal positioning of ATP in the spatially adjacent catalytic domain. Collectively, our studies reveal the ZBD as a critical determinant of ProRS activity and GluProRS stability in vitro and in vivo.

9.
Elife ; 82019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31621579

RESUMO

Recent studies have identified a genetic variant rs641738 near two genes encoding membrane bound O-acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4) that associate with increased risk of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcohol-related cirrhosis, and liver fibrosis in those infected with viral hepatitis (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017). Based on hepatic expression quantitative trait loci analysis, it has been suggested that MBOAT7 loss of function promotes liver disease progression (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017), but this has never been formally tested. Here we show that Mboat7 loss, but not Tmc4, in mice is sufficient to promote the progression of NAFLD in the setting of high fat diet. Mboat7 loss of function is associated with accumulation of its substrate lysophosphatidylinositol (LPI) lipids, and direct administration of LPI promotes hepatic inflammatory and fibrotic transcriptional changes in an Mboat7-dependent manner. These studies reveal a novel role for MBOAT7-driven acylation of LPI lipids in suppressing the progression of NAFLD.


Assuntos
Aciltransferases/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Acilação , Animais , Progressão da Doença , Humanos , Camundongos
10.
Sci Rep ; 8(1): 1154, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348626

RESUMO

Protein phosphorylation is an important post-translational modification that can regulate the protein function. The current knowledge on the phosphorylation status of plant oil body (OB) proteins is inadequate. This present study identifies the distinct physiological substrates of Arabidopsis serine/threonine/tyrosine protein kinase (STYK) and its role in seed oil accumulation; the role of Arabidopsis OLE1, a major seed OB protein has also been elucidated. In vitro kinase assay followed by mass spectrometry identifies residue that are phosphorylated by STYK. Further, co-expression of OLE1 and STYK in yeast cells increases the cellular lipid levels and reduces the total lipid when OLE1 was replaced with OLE1T166A. Moreover, in vivo experiments with OB isolated from wild-type and styk knock-out lines show the ability of STYK to phosphorylate distinct OB proteins. OLE1T166A mutant and Arabidopsis styk mutant demonstrate the significant reduction of its substrate phosphorylation. styk mutant line significantly reduces the amount of total seed oil as compared to wild-type seeds. Together, our results provide the evidences that Arabidopsis At2G24360 (STYK) is phosphorylating oil body proteins and the phosphorylation regulates the oil content in Arabidopsis seeds.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Gotículas Lipídicas/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Sementes/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Gotículas Lipídicas/química , Metabolismo dos Lipídeos/genética , Mutação , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/enzimologia , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA