Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(48): 8960-8979, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36241385

RESUMO

Detecting object boundaries is crucial for recognition, but how the process unfolds in visual cortex remains unknown. To study the problem faced by a hypothetical boundary cell, and to predict how cortical circuitry could produce a boundary cell from a population of conventional "simple cells," we labeled 30,000 natural image patches and used Bayes' rule to help determine how a simple cell should influence a nearby boundary cell depending on its relative offset in receptive field position and orientation. We identified the following three basic types of cell-cell interactions: rising and falling interactions with a range of slopes and saturation rates, and nonmonotonic (bump-shaped) interactions with varying modes and amplitudes. Using simple models, we show that a ubiquitous cortical circuit motif consisting of direct excitation and indirect inhibition-a compound effect we call "incitation"-can produce the entire spectrum of simple cell-boundary cell interactions found in our dataset. Moreover, we show that the synaptic weights that parameterize an incitation circuit can be learned by a single-layer "delta" rule. We conclude that incitatory interconnections are a generally useful computing mechanism that the cortex may exploit to help solve difficult natural classification problems.SIGNIFICANCE STATEMENT Simple cells in primary visual cortex (V1) respond to oriented edges and have long been supposed to detect object boundaries, yet the prevailing model of a simple cell-a divisively normalized linear filter-is a surprisingly poor natural boundary detector. To understand why, we analyzed image statistics on and off object boundaries, allowing us to characterize the neural-style computations needed to perform well at this difficult natural classification task. We show that a simple circuit motif known to exist in V1 is capable of extracting high-quality boundary probability signals from local populations of simple cells. Our findings suggest a new, more general way of conceptualizing cell-cell interconnections in the cortex.


Assuntos
Córtex Visual , Teorema de Bayes , Reconhecimento Psicológico , Aprendizagem , Comunicação Celular
2.
Neuroscience ; 489: 234-250, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272004

RESUMO

A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.


Assuntos
Córtex Visual , Neurônios/fisiologia , Células Piramidais , Córtex Visual/fisiologia , Percepção Visual/fisiologia
3.
Acta Ophthalmol ; 96(2): e168-e173, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28926199

RESUMO

PURPOSE: We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. METHODS: Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. RESULTS: The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). CONCLUSION: Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging.


Assuntos
Algoritmos , Retinopatia Diabética/diagnóstico , Técnicas de Diagnóstico Oftalmológico , Processamento de Imagem Assistida por Computador/métodos , Adulto , Idoso , Área Sob a Curva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fotografação/métodos , Curva ROC , Sensibilidade e Especificidade , Software
4.
J Vis ; 13(14)2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24381295

RESUMO

A key computation in visual cortex is the extraction of object contours, where the first stage of processing is commonly attributed to V1 simple cells. The standard model of a simple cell-an oriented linear filter followed by a divisive normalization-fits a wide variety of physiological data, but is a poor performing local edge detector when applied to natural images. The brain's ability to finely discriminate edges from nonedges therefore likely depends on information encoded by local simple cell populations. To gain insight into the corresponding decoding problem, we used Bayes's rule to calculate edge probability at a given location/orientation in an image based on a surrounding filter population. Beginning with a set of ∼ 100 filters, we culled out a subset that were maximally informative about edges, and minimally correlated to allow factorization of the joint on- and off-edge likelihood functions. Key features of our approach include a new, efficient method for ground-truth edge labeling, an emphasis on achieving filter independence, including a focus on filters in the region orthogonal rather than tangential to an edge, and the use of a customized parametric model to represent the individual filter likelihood functions. The resulting population-based edge detector has zero parameters, calculates edge probability based on a sum of surrounding filter influences, is much more sharply tuned than the underlying linear filters, and effectively captures fine-scale edge structure in natural scenes. Our findings predict nonmonotonic interactions between cells in visual cortex, wherein a cell may for certain stimuli excite and for other stimuli inhibit the same neighboring cell, depending on the two cells' relative offsets in position and orientation, and their relative activation levels.


Assuntos
Sinais (Psicologia) , Percepção de Forma/fisiologia , Funções Verossimilhança , Córtex Visual/fisiologia , Teorema de Bayes , Humanos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA