Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 264: 66-77, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29787883

RESUMO

This work studied the optimal conditions for pyrolysis of Prosopis juliflora wood in fixed-bed tubular reactor. The optimal conditions are measured by performing pyrolysis experiment with respect to wood properties such as particle size, moisture and pyrolysis condition such as, temperatures, heating rates. Higher solid yield (36.8%) was recorded for a slower heating rate of larger particle size at lower temperatures. Further, higher liquid yield (38.3%) was observed while maintaining high heating rate and temperature. It is observed that with increase in particle size, the yield of char and gas decreases and bio-oil increases. The literature reported biomass pyrolysis kinetic model is validated for Prosopis juliflora wood. The kinetic models are able to predict the performance of fixed-bed tubular reactor in terms of pyrolysis product properties. The validated kinetic model may be used for the design of commercial fixed bed pyrolysis reactor to process Prosopis juliflora wood.


Assuntos
Reatores Biológicos , Prosopis , Biomassa , Calefação , Temperatura Alta , Temperatura , Madeira
2.
Bioresour Technol ; 233: 413-422, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28327455

RESUMO

This paper deals with the pyrolysis of Prosopis juliflora fuelwood using thermogravimetric analysis to determine the kinetic parameters at six different heating rates of 2, 5, 10, 15, 20 and 25°C/min. The activation energy of pyrolysis was calculated using different methods, namely Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and Friedman model and corresponding calculated activation energy were found to be 164.6, 204, 203.2, and 219.3kJ/mol, respectively for each method. The three-pseudo component model was applied to calculate the following three kinetic parameters: activation energy, pre-exponential factor and order of reaction. The experimental results were validated with model prediction for all the six heating rates. The three-pseudo component model is able to predict experimental results much accurately while considering variable order reaction model (n≠1).


Assuntos
Prosopis , Termogravimetria , Biomassa , Calefação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA