Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(684): eabq8476, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812347

RESUMO

Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.


Assuntos
Artrite Reumatoide , Doenças Periodontais , Humanos , Autoanticorpos , Mucosa Bucal , Formação de Anticorpos , Epitopos , Bactérias
2.
Nat Commun ; 14(1): 319, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658110

RESUMO

The immune mechanisms that mediate synovitis and joint destruction in rheumatoid arthritis (RA) remain poorly defined. Although increased levels of CD8+ T cells have been described in RA, their function in pathogenesis remains unclear. Here we perform single cell transcriptome and T cell receptor (TCR) sequencing of CD8+ T cells derived from anti-citrullinated protein antibodies (ACPA)+ RA blood. We identify GZMB+CD8+ subpopulations containing large clonal lineage expansions that express cytotoxic and tissue homing transcriptional programs, while a GZMK+CD8+ memory subpopulation comprises smaller clonal expansions that express effector T cell transcriptional programs. We demonstrate RA citrullinated autoantigens presented by MHC class I activate RA blood-derived GZMB+CD8+ T cells to expand, express cytotoxic mediators, and mediate killing of target cells. We also demonstrate that these clonally expanded GZMB+CD8+ cells are present in RA synovium. These findings suggest that cytotoxic CD8+ T cells targeting citrullinated antigens contribute to synovitis and joint tissue destruction in ACPA+ RA.


Assuntos
Artrite Reumatoide , Sinovite , Humanos , Linfócitos T CD8-Positivos/metabolismo , Membrana Sinovial/metabolismo , Receptores de Antígenos de Linfócitos T , Autoantígenos , Autoanticorpos
3.
Clin Immunol ; 246: 109180, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396013

RESUMO

Borrelia burgdorferi (Bb) infection causes Lyme disease, for which there is need for more effective therapies. Here, we sequenced the antibody repertoire of plasmablasts in Bb-infected humans. We expressed recombinant monoclonal antibodies (mAbs) representing the identified plasmablast clonal families, and identified their binding specificities. Our recombinant anti-Bb mAbs exhibit a range of activity in mediating macrophage phagocytosis of Bb. To determine if we could increase the macrophage phagocytosis-promoting activity of our anti-Bb mAbs, we generated a TLR9-agonist CpG-oligo-conjugated anti-BmpA mAb. We demonstrated that our CpG-conjugated anti-BmpA mAb exhibited increased peak Bb phagocytosis at 12-24 h, and sustained macrophage phagocytosis over 60+ hrs. Further, our CpG-conjugated anti-BmpA mAb induced macrophages to exhibit a sustained activation morphology. Our findings demonstrate the potential for TLR9-agonist CpG-oligo conjugates to enhance mAb-mediated clearance of Bb, and this approach might also enhance the activity of other anti-microbial mAbs.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Borrelia burgdorferi/metabolismo , Receptor Toll-Like 9/metabolismo , Macrófagos , Doença de Lyme/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo
4.
Nat Immunol ; 23(1): 33-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848871

RESUMO

The first ever US Food and Drug Administration-approved messenger RNA vaccines are highly protective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination. The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2. Three weeks after the first dose, we observed an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool. This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Células T de Memória/imunologia , Domínios Proteicos/imunologia , Eficácia de Vacinas
5.
J Clin Microbiol ; 59(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33087434

RESUMO

Lyme disease is a tick-borne infection caused by the bacteria Borrelia burgdorferi Current diagnosis of early Lyme disease relies heavily on clinical criteria, including the presence of an erythema migrans rash. The sensitivity of current gold-standard diagnostic tests relies upon antibody formation, which is typically delayed and thus of limited utility in early infection. We conducted a study of blood and skin biopsy specimens from 57 patients with a clinical diagnosis of erythema migrans. Samples collected at the time of diagnosis were analyzed using an ultrasensitive, PCR-based assay employing an isothermal amplification step and multiple primers. In 75.4% of patients, we directly detected one or more B. burgdorferi genotypes in the skin. Two-tier testing showed that 20 (46.5%) of those found to be PCR positive remained serologically negative at both acute and convalescent time points. Multiple genotypes were found in three (8%) of those where a specific genotype could be identified. The 13 participants who lacked PCR and serologic evidence for exposure to B. burgdorferi could be differentiated as a group from PCR-positive participants by their levels of several immune markers as well as by clinical descriptors such as the number of acute symptoms and the pattern of their erythema migrans rash. These results suggest that within a Mid-Atlantic cohort, patient subgroups can be identified using PCR-based direct detection approaches. This may be particularly useful in future research such as vaccine trials and public health surveillance of tick-borne disease patterns.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Doenças Transmitidas por Carrapatos , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Humanos , Doença de Lyme/diagnóstico , Reação em Cadeia da Polimerase
6.
Cell Rep ; 31(6): 107642, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402275

RESUMO

Infant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown. Here, we define ≥10% afucosylation of maternal anti-dengue IgGs as a risk factor for susceptibility of infants to symptomatic dengue infections. Mechanistic experiments show that afucosylation of anti-dengue IgGs promotes FcγRIIIa signaling during infection, in turn enhancing dengue virus replication in FcγRIIIa+ monocytes. These studies identify a post-translational modification of anti-dengue IgGs that correlates with risk for symptomatic infant dengue infections and define a mechanism by which afucosylated antibodies and FcγRIIIa enhance dengue infections.


Assuntos
Anticorpos Anti-Idiotípicos/genética , Vírus da Dengue/genética , Dengue Grave/virologia , Feminino , Humanos , Lactente , Recém-Nascido
7.
AIDS ; 34(9): 1313-1323, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287071

RESUMO

OBJECTIVE(S): The aim of this study was to develop and evaluate the activity of bispecific antibodies (bsAbs) to enhance natural killer (NK) cell antibody-dependent cellular cytotoxicity (ADCC) against HIV-infected cells. DESIGN: These bsAbs are based on patient-derived antibodies targeting the conserved gp41 stump of HIV Env, and also incorporate a high-affinity single chain variable fragment (scFv) targeting the activating receptor CD16 on NK cells. Overall, we expect the bsAbs to provide increased affinity and avidity over their corresponding mAbs, allowing for improved ADCC activity against Env-expressing target cells. METHODS: bsAbs and their corresponding mAbs were expressed in 293T cells and purified. The binding of bsAbs and mAbs to their intended targets was determined using Bio-Layer Interferometry, as well as flow cytometry based binding assays on in-vitro infected cells. The ability of these bsAbs to improve NK cell activity against HIV-infected cells was tested using in-vitro co-culture assays, using flow cytometry and calcein release to analyse NK cell degranulation and target cell killing, respectively. RESULTS: The bsAbs-bound gp41 with similar affinity to their corresponding mAbs had increased affinity for CD16. The bsAbs also bound to primary CD4 T cells infected in vitro with two different strains of HIV. In addition, the bsAbs induce increased NK cell degranulation and killing of autologous HIV-infected CD4 T cells. CONCLUSION: On the basis of their in-vitro killing efficacy, bsAbs may provide a promising strategy to improve NK-mediated immune targeting of infected cells during HIV infection.


Assuntos
Anticorpos Biespecíficos , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células Matadoras Naturais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , HIV-1/imunologia , Humanos , Células Matadoras Naturais/virologia , Fragmentos de Peptídeos
9.
PLoS Pathog ; 15(2): e1007572, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779811

RESUMO

Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.


Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Anticorpos Anti-HIV/fisiologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Testes de Neutralização/métodos
10.
Proc Natl Acad Sci U S A ; 115(26): 6834-6839, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29735709

RESUMO

New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Acinetobacter baumannii/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Lipopolissacarídeos/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/genética
11.
Proc Natl Acad Sci U S A ; 113(4): E459-68, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26759369

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens.


Assuntos
Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Animais , Azidas , Linfócitos B/imunologia , Linfócitos B/patologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Feminino , Genes Reporter , Vetores Genéticos , Humanos , Imunoterapia Adotiva/efeitos adversos , Ativação Linfocitária , Linfopenia/etiologia , Linfopenia/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fenilalanina/análogos & derivados , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas de Saccharomyces cerevisiae/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Am Chem Soc ; 137(16): 5288-91, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25826669

RESUMO

The development of immunotherapies for multiple myeloma is critical to provide new treatment strategies to combat drug resistance. We report a bispecific antibody against B cell maturation antigen (BiFab-BCMA), which potently and specifically redirects T cells to lyse malignant multiple myeloma cells. BiFab-BCMA lysed target BCMA-positive cell lines up to 20-fold more potently than a CS1-targeting bispecific antibody (BiFab-CS1) developed in an analogous fashion. Further, BiFab-BCMA robustly activated T cells in vitro and mediated rapid tumor regression in an orthotopic xenograft model of multiple myeloma. The in vitro and in vivo activities of BiFab-BCMA are comparable to those of anti-BCMA chimeric antigen receptor T cell therapy (CAR-T-BCMA), for which two clinical trials have recently been initiated. A BCMA-targeted bispecific antibody presents a promising treatment option for multiple myeloma.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B/imunologia , Mieloma Múltiplo/terapia , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos SCID , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
13.
Proc Natl Acad Sci U S A ; 110(25): 10282-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733947

RESUMO

The trans-translation pathway for protein tagging and ribosome release plays a critical role for viability and virulence in a wide range of pathogens but is not found in animals. To explore the use of trans-translation as a target for antibiotic development, a high-throughput screen and secondary screening assays were used to identify small molecule inhibitors of the pathway. Compounds that inhibited protein tagging and proteolysis of tagged proteins were recovered from the screen. One of the most active compounds, KKL-35, inhibited the trans-translation tagging reaction with an IC50 = 0.9 µM. KKL-35 and other compounds identified in the screen exhibited broad-spectrum antibiotic activity, validating trans-translation as a target for drug development. This unique target could play a key role in combating strains of pathogenic bacteria that are resistant to existing antibiotics.


Assuntos
Antibacterianos/biossíntese , Escherichia coli/genética , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , Bibliotecas de Moléculas Pequenas , Antibacterianos/farmacologia , Bioensaio , Códon de Terminação/genética , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Biblioteca Gênica , Humanos , Luciferases/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribossomos/genética
14.
PLoS One ; 8(2): e57537, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451240

RESUMO

Nonstop mRNAs pose a challenge for bacteria, because translation cannot terminate efficiently without a stop codon. The trans-translation pathway resolves nonstop translation complexes by removing the nonstop mRNA, the incomplete protein, and the stalled ribosome. P1 co-transduction experiments demonstrated that tmRNA, a key component of the trans-translation pathway, is essential for viability in Shigella flexneri. tmRNA was previously shown to be dispensable in the closely related species Escherichia coli, because E. coli contains a backup system for trans-translation mediated by the alternative release factor ArfA. Genome sequence analysis showed that S. flexneri does not have a gene encoding ArfA. E. coli ArfA could suppress the requirement for tmRNA in S. flexneri, indicating that tmRNA is essential in S. flexneri because there is no functional backup system. These data suggest that resolution of nonstop translation complexes is required for most bacteria.


Assuntos
RNA Bacteriano/genética , Shigella flexneri/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Códon de Terminação , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Shigella flexneri/metabolismo
15.
Antimicrob Agents Chemother ; 56(4): 1854-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252821

RESUMO

The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B. anthracis and drug-resistant strains of S. aureus. ClpXP inhibition represents a novel therapeutic strategy to simultaneously sensitize pathogenic bacteria to host defenses and pharmaceutical antibiotics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Endopeptidase Clp/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Dados de Sequência Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tetrazóis/farmacologia , Catelicidinas
16.
Biochimie ; 93(11): 1993-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21664408

RESUMO

Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pareamento de Bases/genética , Mutação , Ribossomos/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA