Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14484, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230156

RESUMO

Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule-actomyosin crosstalk is required for a neuron's 'two-stroke' nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule-actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration. Lattice light-sheet and structured illumination microscopy reveal a proximal leading process nanoscale architecture wherein f-actin and drebrin intervene between microtubules and the plasma membrane. Functional perturbations of drebrin demonstrate that proximal leading process microtubule-actomyosin coupling steers the direction of centrosome and somal migration, as well as the switch from tangential to radial migration. Finally, the Siah2 E3 ubiquitin ligase antagonizes drebrin function, suggesting a model for control of the microtubule-actomyosin interfaces during neuronal differentiation.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Cerebelo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Microtúbulos/metabolismo , Neurônios/citologia , Neuropeptídeos/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Microscopia , Nanopartículas/química , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Neural Dev ; 9: 26, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25467954

RESUMO

BACKGROUND: During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. RESULTS: We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. CONCLUSIONS: We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Cerebelo/citologia , Complexo de Golgi/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular , Complexo de Golgi/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miosina Tipo II/metabolismo
3.
Dev Dyn ; 243(6): 833-843, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24599775

RESUMO

BACKGROUND: WNT1 and WNT3A drive a dorsal to ventral gradient of ß-catenin-dependent Wnt signaling in the developing spinal cord. However, the identity of the receptors mediating downstream functions remains poorly understood. RESULTS: In this report, we show that the spatiotemporal expression patterns of FZD10 and WNT1/WNT3A are highly correlated. We further show that in the presence of LRP6, FZD10 promotes WNT1 and WNT3A signaling using an 8xSuperTopFlash reporter assay. Consistent with a functional role for FZD10, we demonstrate that FZD10 is required for proliferation in the spinal cord. Finally, by using an in situ proximity ligation assay, we observe an interaction between FZD10 and WNT1 and WNT3A proteins. CONCLUSIONS: Together, our results identify FZD10 as a receptor for WNT1 and WNT3A in the developing chick spinal cord.


Assuntos
Proteínas Aviárias/metabolismo , Receptores Frizzled/metabolismo , Medula Espinal/embriologia , Proteína Wnt1/metabolismo , Proteína Wnt3A/metabolismo , Animais , Embrião de Galinha
4.
Adv Exp Med Biol ; 800: 113-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24243103

RESUMO

Proper migration of neurons is one of the most important aspects of early brain development. After neuronal progenitors are born in their respective germinal niches, they must migrate to their final locations to form precise neural circuits. A majority of migrating neurons move by associating and disassociating with glial fibers, which serve as scaffolding for the developing brain. Cerebellar granule neurons provide a model system for examination of the mechanisms of neuronal migration in dissociated and slice culture systems; the ability to purify these cells allows migration assays to be paired with genetic, molecular, and biochemical findings. CGNs migrate in a highly polarized fashion along radial glial fibers, using a two-stroke nucleokinesis cycle. The PAR polarity complex of PARD3, PARD6, and an atypical protein kinase C (aPKC) regulate several aspects of neuronal migration. The PAR polarity complex regulates the coordinated movements of the centrosome and soma during nucleokinesis, and also the stability of the microtubule cytoskeleton during migration. PAR proteins coordinate actomyosin dynamics in the leading process of migrating neurons, which are required for migration. The PAR complex also controls the cell-cell adhesions made by migrating neurons along glial cells, and through this mechanism regulates germinal zone exit during prenatal brain development. These findings suggest that the PAR complex coordinates the movement of multiple cellular elements as neurons migrate and that further examination of PAR complex effectors will not only provide novel insights to address fundamental challenges to the field but also expand our understanding of how the PAR complex functions at the molecular level.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Cerebelo/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular/genética , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Humanos , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Neurônios/citologia , Proteína Quinase C/genética
5.
PLoS Genet ; 7(6): e1002121, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21695238

RESUMO

Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Centrômero/metabolismo , Histonas/metabolismo , Meiose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Segregação de Cromossomos , Cromossomos de Plantas/genética , Histonas/genética
6.
Genetics ; 186(2): 461-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20628040

RESUMO

Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/metabolismo , Histonas/química , Histonas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Teste de Complementação Genética , Histonas/genética , Cinetocoros/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA