Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Toxicol Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995842

RESUMO

Drug-induced kidney injury (DIKI) is of significant concern, both during drug development and in clinical practice. We report a patient-centric approach for clinical implementation of the FDA-qualified kidney safety biomarker panel, highlighting Phase 1 and 2 trials for candidate therapeutics in Pfizer's portfolio (PFE-1 and PFE-2, respectively) that induced renal tubular injury in rat toxicity studies. Clusterin (CLU), cystatin-C (CysC), kidney injury molecule-1 (KIM-1), N-acetyl-beta-D-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were measured in urine samples from i) Phase 1 healthy volunteers (HVs; n = 12) dosed with PFE-1, ii) Phase 2 rheumatoid arthritis patients (RA; n = 266) dosed with PFE-2, iii) lupus patients on standard-of-care therapies (n = 121), and iv) healthy volunteers (n = 60). The FDA-defined composite measure (CM), calculated as the geometric mean response across the 6 biomarkers, was increased ∼30% in HVs administered 100 mg PFE-1 relative to placebo, providing evidence of DIKI. In contrast, the CM for RA patients dosed with PFE-2 was comparable to placebo controls, helping to de-risk the concern for DIKI at clinically relevant doses. Comparing individual biomarker concentrations across disease states revealed that CLU, KIM-1, NAG, NGAL, and OPN are elevated in the urine of RA and lupus patients (those without severe active proliferative lupus nephritis) relative to HVs. Overall, these case studies demonstrate the value of using the FDA-qualified kidney biomarker panel to guide risk assessment, dose selection, and clinical decision making for novel therapeutics, both in HVs and patient populations.

2.
Diagn Progn Res ; 7(1): 18, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697410

RESUMO

A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.

3.
Nat Commun ; 14(1): 1215, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869085

RESUMO

Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94-0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65-0.78), but further technical and clinical validation of these candidate biomarkers is needed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteômica , Humanos , Argininossuccinato Sintase , Biomarcadores , Antígenos CD8 , Frutose
4.
Arch Toxicol ; 97(4): 947-961, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36795116

RESUMO

Drug-induced testicular injury (DITI) is one of the often-observed and challenging safety issues seen during drug development. Semen analysis and circulating hormones currently utilized have significant gaps in their ability to detect testicular damage accurately. In addition, no biomarkers enable a mechanistic understanding of the damage to the different regions of the testis, such as seminiferous tubules, Sertoli, and Leydig cells. MicroRNAs (miRNAs) are a class of non-coding RNAs that modulate gene expression post-transcriptionally and have been indicated to regulate a wide range of biological pathways. Circulating miRNAs can be measured in the body fluids due to tissue-specific cell injury/damage or toxicant exposure. Therefore, these circulating miRNAs have become attractive and promising non-invasive biomarkers for assessing drug-induced testicular injury, with several reports on their use as safety biomarkers for monitoring testicular damage in preclinical species. Leveraging emerging tools such as 'organs-on-chips' that can emulate the human organ's physiological environment and function is starting to enable biomarker discovery, validation, and clinical translation for regulatory qualification and implementation in drug development.


Assuntos
MicroRNA Circulante , MicroRNAs , Masculino , Humanos , Testículo/metabolismo , MicroRNA Circulante/metabolismo , MicroRNAs/genética , Biomarcadores/metabolismo , Células Intersticiais do Testículo/metabolismo
5.
Mol Ther Methods Clin Dev ; 25: 264-277, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35505662

RESUMO

Adeno-associated virus (AAV)-induced dorsal root ganglia (DRG) toxicity has been observed in several nonclinical species, where lesions are characterized by neuronal degeneration/necrosis, nerve fiber degeneration, and mononuclear cell infiltration. As AAV vectors become an increasingly common platform for novel therapeutics, non-invasive biomarkers are needed to better characterize and manage the risk of DRG neurotoxicity in both nonclinical and clinical studies. Based on biological relevance, reagent availability, antibody cross-reactivity, DRG protein expression, and assay performance, neurofilament light chain (NF-L) emerged as a promising biomarker candidate. Dose- and time-dependent changes in NF-L were evaluated in male Wistar Han rats and cynomolgus monkeys following intravenous or intrathecal AAV injection, respectively. NF-L profiles were then compared against microscopic DRG lesions on day 29 post-dosing. In animals exhibiting DRG toxicity, plasma/serum NF-L was strongly associated with the severity of neuronal degeneration/necrosis and nerve fiber degeneration, with elevations beginning as early as day 8 in rats (≥5 × 1013 vg/kg) and day 14 in monkeys (≥3.3 × 1013 vg/dose). Consistent with the unique positioning of DRGs outside the blood-brain barrier, NF-L in cerebrospinal fluid was only weakly associated with DRG findings. In summary, circulating NF-L is a promising biomarker of AAV-induced DRG toxicity in nonclinical species.

6.
Biomark Med ; 15(15): 1389-1396, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533053

RESUMO

Aim: Evaluate the utility of glutamate dehydrogenase (GLDH) and cardiac troponin I as safety biomarkers, and creatine kinase and muscle injury panel as muscle health biomarkers in Duchenne muscular dystrophy. Patients & methods: Data were collected during a Phase II trial of domagrozumab. Results: GLDH was a more specific biomarker for liver injury than alanine aminotransferase. Cardiac troponin I elevations were variable and not sustained, limiting its applicability as a biomarker. Muscle injury panel biomarkers were no more informative than creatine kinase as a muscle health biomarker. Conclusion: Results support the use of GLDH as a specific biomarker for liver injury in patients with Duchenne muscular dystrophy. Clinical trial registration: ClinicalTrials.gov, NCT02310763.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/sangue , Monitoramento de Medicamentos/métodos , Distrofia Muscular de Duchenne/tratamento farmacológico , Adolescente , Alanina Transaminase/sangue , Anticorpos Monoclonais Humanizados/administração & dosagem , Aspartato Aminotransferases/sangue , Criança , Creatina Quinase/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Glutamato Desidrogenase/sangue , Humanos , Masculino , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/diagnóstico , Sensibilidade e Especificidade , Resultado do Tratamento , Troponina I/sangue
7.
Toxicol Sci ; 181(1): 23-34, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33483742

RESUMO

Early diagnosis of drug-induced liver injury (DILI) continues to be a major hurdle during drug development and postmarketing. The objective of this study was to evaluate the diagnostic performance of promising biomarkers of liver injury-glutamate dehydrogenase (GLDH), cytokeratin-18 (K18), caspase-cleaved K18 (ccK18), osteopontin (OPN), macrophage colony-stimulating factor (MCSF), MCSF receptor (MCSFR), and microRNA-122 (miR-122) in comparison to the traditional biomarker alanine aminotransferase (ALT). Biomarkers were evaluated individually and as a multivariate model in a cohort of acetaminophen overdose (n = 175) subjects and were further tested in cohorts of healthy adults (n = 135), patients with liver damage from various causes (n = 104), and patients with damage to the muscle (n = 74), kidney (n = 40), gastrointestinal tract (n = 37), and pancreas (n = 34). In the acetaminophen cohort, a multivariate model with GLDH, K18, and miR-122 was able to detect DILI more accurately than individual biomarkers alone. Furthermore, the three-biomarker model could accurately predict patients with liver injury compared with healthy volunteers or patients with damage to muscle, pancreas, gastrointestinal tract, and kidney. Expression of K18, GLDH, and miR-122 was evaluated using a database of transcriptomic profiles across multiple tissues/organs in humans and rats. K18 mRNA (Krt18) and MiR-122 were highly expressed in liver whereas GLDH mRNA (Glud1) was widely expressed. We performed a comprehensive, comparative performance assessment of 7 promising biomarkers and demonstrated that a 3-biomarker multivariate model can accurately detect liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Acetaminofen , Alanina Transaminase , Animais , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Humanos , Fígado , Ratos
8.
J Pharmacol Exp Ther ; 376(1): 12-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115823

RESUMO

Faced with the health and economic consequences of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the biomedical community came together to identify, diagnose, prevent, and treat the novel disease at breathtaking speeds. The field advanced from a publicly available viral genome to a commercialized globally scalable diagnostic biomarker test in less than 2 months, and first-in-human dosing with vaccines and repurposed antivirals followed shortly thereafter. This unprecedented efficiency was driven by three key factors: 1) international multistakeholder collaborations, 2) widespread data sharing, and 3) flexible regulatory standards tailored to meet the urgency of the situation. Learning from the remarkable success achieved during this public health crisis, we are proposing a biomarker-centric approach throughout the drug development pipeline. Although all therapeutic areas would benefit from end-to-end biomarker science, efforts should be prioritized to areas with the greatest unmet medical needs, including neurodegenerative diseases, chronic lower respiratory diseases, metabolic disorders, and malignant neoplasms. SIGNIFICANCE STATEMENT: Faced with the unprecedented threat of the severe acute respiratory syndrome coronavirus 2 pandemic, the biomedical community collaborated to develop a globally scalable diagnostic biomarker (viral DNA) that catalyzed therapeutic development at breathtaking speeds. Learning from this remarkable efficiency, we propose a multistakeholder biomarker-centric approach to drug development across therapeutic areas with unmet medical needs.


Assuntos
Antivirais/uso terapêutico , COVID-19/epidemiologia , Defesa Civil/tendências , Desenvolvimento de Medicamentos/tendências , Descoberta de Drogas/tendências , Animais , Biomarcadores/análise , COVID-19/genética , Defesa Civil/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Marcadores Genéticos/genética , Humanos , Pandemias , Tratamento Farmacológico da COVID-19
9.
Clin Pharmacol Ther ; 107(2): 333-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31314926

RESUMO

The diagnosis and management of drug-induced liver injury (DILI) remains a challenge in clinical trials in drug development. The qualification of emerging biomarkers capable of predicting DILI soon after the initiation of treatment, differentiating DILI from underlying liver disease, identifying the causal entity, and assigning appropriate treatment options after DILI is diagnosed are needed. Qualification efforts have been hindered by lack of properly stored and consented biospecimens that are linked to clinical data relevant to a specific context of use. Recommendations are made for biospecimen collection procedures, with the focus on clinical trials, and for specific emerging biomarkers to focus qualification efforts.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/sangue , Ensaios Clínicos como Assunto/normas , Humanos , Consentimento Livre e Esclarecido , Testes de Função Hepática , Fenótipo
10.
Clin Pharmacol Ther ; 103(1): 27-31, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143971

RESUMO

Pharmaceutical and biotechnology companies routinely use biomarkers to obtain quantitative metrics for drug exposure, efficacy, and safety and to inform clinical trial design with regard to patient selection, treatments, and outcomes. Biomarker science has the unique capability to catalyze precompetitive collaborations between academia, industry, regulatory agencies, and other stakeholders with the ultimate goal of accelerating the delivery of safe and effective medicines to patients, particularly in areas of high unmet need.


Assuntos
Biotecnologia , Ensaios Clínicos como Assunto/métodos , Indústria Farmacêutica , Tecnologia Farmacêutica , Biomarcadores/análise , Biotecnologia/métodos , Biotecnologia/organização & administração , Indústria Farmacêutica/métodos , Indústria Farmacêutica/organização & administração , Humanos , Comunicação Interdisciplinar , Avaliação de Processos e Resultados em Cuidados de Saúde/métodos , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/organização & administração
11.
Toxicol Pathol ; 44(2): 137-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839329

RESUMO

This article highlights emerging roles for veterinary pathologists outside of traditional functions and in line with the translational research (TR) approach. Veterinary pathologists offer unique and valuable expertise toward addressing particular TR and associated translational pharmacology questions, identifying gaps and risks in biomarker and pathology strategies, and advancing TR team decision making. Veterinary pathologists' attributes that are integral to the TR approach include (i) well-developed understanding of comparative physiology, pathology, and disease; (ii) extensive experience in interpretation and integration of complex data sets on whole-body responses and utilizing this for deciphering pathogenesis and translating events between laboratory species and man; (iii) proficiency in recognizing differences in disease end points among individuals, animal species and strains, and assessing correlations between these differences and other investigative (including biomarker) findings; and (iv) strong background in a wide spectrum of research technologies that can address pathomechanistic questions and biomarker needs. Some of the more evident roles in which veterinary pathologists can offer their greatest contributions to address questions and strategies of TR and biomarker integration will be emphasized.


Assuntos
Biomarcadores , Descoberta de Drogas , Patologia Veterinária , Pesquisa Translacional Biomédica , Animais , Humanos , Patologistas , Medicina de Precisão
12.
Toxicol Appl Pharmacol ; 312: 34-41, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26827821

RESUMO

Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well as their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules.


Assuntos
Biomarcadores/metabolismo , Rim/efeitos dos fármacos , MicroRNAs/metabolismo , Néfrons/metabolismo , Testes de Toxicidade , Líquidos Corporais/metabolismo , Humanos
13.
Toxicol Pathol ; 42(7): 1058-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24705882

RESUMO

Most published reviews of preclinical toxicological clinical pathology focus on the fundamental aspects of hematology, clinical chemistry, coagulation, and urinalysis in routine toxicology animal species, for example, rats, mice, dogs, and nonhuman primates. The objective of this continuing education course was to present and discuss contemporary examples of nonroutine applications of clinical pathology endpoints used in the drug development setting. Area experts discussed bone turnover markers of laboratory animal species, clinical pathology of pregnant and growing laboratory animals, clinical pathology of nonroutine laboratory animal species, and unique applications of the Siemens Advia(®) hematology analyzer. This article is a summary based on a presentation given at the 31st Annual Symposium of the Society of Toxicologic Pathology, during the Continuing Education Course titled "Nontraditional Applications of Clinical Pathology in Drug Discovery and Preclinical Toxicology."


Assuntos
Avaliação Pré-Clínica de Medicamentos , Patologia Clínica/métodos , Animais , Biomarcadores/sangue , Osso e Ossos/metabolismo , Cricetinae , Modelos Animais de Doenças , Cães , Determinação de Ponto Final , Cobaias , Humanos , Camundongos , Primatas , Coelhos , Ratos
14.
Toxicol Pathol ; 42(1): 229-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24226507

RESUMO

Pancreatic toxicity commonly affects the endocrine or exocrine pancreas. However, it can also occur at the endocrine-exocrine interface (EEI), where the capillary network of the islet merges with the capillaries of the surrounding acinar tissue, that is, the insulo-acinar portal system. The goal of this article is to describe a novel, test article-induced pancreatic toxicity that originated at the EEI and to summarize investigations into the mechanistic basis of the injury. This injury was initially characterized by light microscopy in 7/14 day-toxicity studies in Sprague-Dawley (Crl: CD®[SD]) rats with undisclosed test articles. Microvascular injury at the interface resulted in peri-islet serum exudation, fibrin deposition, hemorrhage, inflammation, and secondary degeneration/necrosis of surrounding exocrine tissue. More chronic injury presented as islet fibrosis and lobular atrophy. Direct cytotoxicity affecting the capillary endothelium at the EEI was confirmed ultrastructurally on day 4. Endothelial microparticle and blood flow studies further confirmed endothelial involvement. Similar lesions occurred less frequently in 2 other rat strains and not in the mouse, dog, or cynomolgus macaque. In summary, in vivo and investigative study data confirmed primary endothelial cytotoxicity in the pathogenesis of this lesion and suggested that the lesion may be rat/rat strain-specific and of uncertain relevance for human safety risk assessment.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Chumbo/toxicidade , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pancreatite/patologia , Animais , Capilares/efeitos dos fármacos , Capilares/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Hemodinâmica , Hemorragia/induzido quimicamente , Hemorragia/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pâncreas/patologia , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Sistema Porta/efeitos dos fármacos , Sistema Porta/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Medição de Risco , Testes de Toxicidade Aguda
15.
J Immunol ; 191(9): 4540-50, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068666

RESUMO

Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton's tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.


Assuntos
Linfócitos B/imunologia , Glomerulonefrite/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Piperidinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/uso terapêutico , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Centro Germinativo/citologia , Glomerulonefrite/metabolismo , Glomerulonefrite/prevenção & controle , Rim/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/prevenção & controle , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NZB , Piperidinas/farmacologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Receptores Fc , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
16.
Methods Mol Biol ; 909: 259-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22903721

RESUMO

Understanding changes in the expression of specific proteins and/or alterations in their posttranslational modifications is crucial to elucidating the molecular mechanisms underlying disease states such as alcoholic liver disease. Protein separation and analysis techniques such as two-dimensional electrophoresis and mass spectrometry can be used for identifying biomarker proteins that are altered during progression of alcoholic liver disease. In this chapter, we outline methods for resolving liver tissue proteins from a rodent model of alcoholic liver disease using two-dimensional electrophoresis and identifying differentially expressed proteins using mass spectrometry. In addition, since oxidative stress strongly correlates with alcoholic liver disease, we also describe methods for identifying oxidatively modified proteins from liver tissue. We specifically focus on identifying proteins that are carbonylated as protein carbonylation is a permanent modification and considered deleterious to cells. The combination of two-dimensional electrophoresis for protein resolution, mass spectrometry for protein identification, and affinity-based methods for enriching and identifying carbonylated proteins is a powerful methodology for protein biomarker identification.


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Fígado/metabolismo , Proteoma/isolamento & purificação , Animais , Biotinilação , Cromatografia de Afinidade , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Fígado/química , Carbonilação Proteica , Proteólise , Proteoma/química , Proteoma/metabolismo , Proteômica , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem , Espectrometria de Massas em Tandem , Extratos de Tecidos/química , Extratos de Tecidos/isolamento & purificação , Tripsina/química
17.
Toxicol Pathol ; 40(3): 482-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22395791

RESUMO

Although gastrointestinal (GI) toxicity is a significant dose-limiting safety concern noted in multiple therapeutic areas, there are no GI biomarkers that can accurately track, precede, or reliably correlate with histologic evidence of injury. While significant efforts have been made within the pharmaceutical industry, academia, and consortia to address the biomarker gaps in other target organs such as liver, kidney, and muscle (cardiac and skeletal), there have been no concerted efforts in the area of GI biomarkers. Using PAK4 inhibitor as a preclinical rat model of gastric toxicity, selected candidate biomarkers from literature were evaluated to test their usefulness as gastric injury biomarkers in this study. Biomarkers selected in this study include plasma diamino oxidase and citrulline, fecal calprotectin, bile acids, and miRNA. Based on the results, L-citrulline and miR-194 results appear to correlate well with histopathology findings. Although these biomarkers will need additional assay validation and qualification to test if they truly predict the injury prior to histopathology, the results provide promise for further testing using additional GI toxicants. In addition, this article highlights important gaps in GI biomarkers and provides substrate and rationale for additional investments either for further testing of already available biomarkers or to pursue extensive biomarker discovery approaches.


Assuntos
Inibidores Enzimáticos/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Testes de Toxicidade/métodos , Quinases Ativadas por p21/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/sangue , Animais , Ácidos e Sais Biliares/análise , Biomarcadores/análise , Citrulina/sangue , Modelos Animais de Doenças , Fezes/química , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/metabolismo , Histocitoquímica , Jejuno/química , Jejuno/efeitos dos fármacos , Jejuno/enzimologia , Jejuno/metabolismo , Complexo Antígeno L1 Leucocitário/análise , MicroRNAs/análise , Ratos , Ratos Wistar , Estômago/química , Estômago/efeitos dos fármacos , Estômago/enzimologia
18.
Vet Clin Pathol ; 40(2): 119-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21631562

RESUMO

This manuscript is intended to provide a best practice approach to accurately and consistently assess toxicant-induced bone marrow effects of test articles. In nonclinical toxicity studies, complete blood count data in conjunction with the histological examination of the bone marrow are recommended as the foundation for assessing the effect of test articles on the hematopoietic system. This approach alone can be used successfully in many studies. However, in some situations it may be necessary to further characterize effects on the different hematopoietic lineages, either by cytological or flow cytometric evaluation of the bone marrow. Both modalities can be used successfully, and which one is selected will depend on the expertise, preference of the facility, and the nature of the change in the bone marrow. Other specialized techniques such as clonogenic assays or electron microscopy are used rarely to further characterize hematotoxicity. The indications and techniques to successfully employ histological, cytological, or flow cytometric evaluation as well as clonogenic assays and electron microscopy are reviewed.

19.
Toxicol Pathol ; 39(2): 435-48, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21300792

RESUMO

This manuscript is intended to provide a best practice approach to accurately and consistently assess toxicant-induced bone marrow effects of test articles. In nonclinical toxicity studies, complete blood count data in conjunction with the histological examination of the bone marrow are recommended as the foundation for assessing the effect of test articles on the hematopoietic system. This approach alone can be used successfully in many studies. However, in some situations it may be necessary to further characterize effects on the different hematopoietic lineages, either by cytological or flow cytometric evaluation of the bone marrow. Both modalities can be used successfully, and which one is selected will depend on the expertise, preference of the facility, and the nature of the change in the bone marrow. Other specialized techniques such as clonogenic assays or electron microscopy are used rarely to further characterize hematotoxicity. The indications and techniques to successfully employ histological, cytological, or flow cytometric evaluation as well as clonogenic assays and electron microscopy are reviewed.


Assuntos
Medula Óssea/patologia , Guias como Assunto , Hematopoese , Animais , Benchmarking , Biologia Celular/normas , Estudos de Avaliação como Assunto , Citometria de Fluxo/normas , Sistema Hematopoético , Histologia/normas , Humanos , Coloração e Rotulagem , Toxicologia/normas
20.
Clin Lab Med ; 31(1): 161-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21295728

RESUMO

Currently, no serum biomarkers, including the biochemical gold standard alanine aminotransferase, can differentiate drug-induced from non-drug-related liver injury, can differentiate liver injury mediated by a specific drug or mechanism, or can accurately predict the progression and outcome of hepatic injury. Efforts have been made by veterinary clinical pathologists, toxicologists, and other scientists to address the gaps in hepatic biomarkers faced during drug development; although there have been no breakthroughs, several novel biomarker candidates have been identified. Efforts to address the gaps in translatable hepatic biomarkers and the challenges and hurdles faced during this process are highlighted in this review.


Assuntos
Biomarcadores Farmacológicos/sangue , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Testes de Toxicidade/métodos , Alanina Transaminase/sangue , Alanina Transaminase/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Isoenzimas/sangue , Modelos Animais , RNA Mensageiro/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA