Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Commun ; 34: 105192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36570033

RESUMO

We carried out theoretical and experimental analyses of ZnO and ZnS nanoparticles as smart semiconductor materials in light-activated antimicrobial coating for application in masks. We used low-cost hydrothermally processable precursors to direct the growth of the coatings on cotton fabric. Both ZnO and ZnS coatings had high reactivities as disinfection agents in photocatalysis reactions for the degradation of a methylene blue dye solution. Also, these coatings showed excellent UV protection properties. For understanding at the molecular level, the broad-spectrum biological activities of the ZnO and ZnS coatings against Fusarium Oxysporum fungi, Escherichia coli bacteria, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus and their variants, were investigated computationally. Hexagonal Zn6O6 and Zn6S6 clusters were used as models for the simulations through excited- and ground-state calculations. The theoretical findings show that changes in the local chemical environment in these excited systems have a profound impact on their physical and chemical properties and thus, can provide a better understanding to engineer new functional materials in light-activated antimicrobial coatings for the mitigation of SARS-CoV-2 infection.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 184: 308-317, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28525866

RESUMO

B3LYP and MP2 calculations have been carried out to investigate tautomers and enantiomers of penicillamine (Pen). Their infrared (IR), ultraviolet (UV), circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra were obtained at linear-response, time-dependent DFT (TD-DFT). IR, UV and NMR spectra cannot be used to identify Pen enantiomers, showing nearly equal spectral profiles. CD spectra, however, give rise to completely symmetric signals, forming a perfect specular image to each other. Distinct CD profiles were also obtained for Pen tautomers. Important IR differences were found in positions and intensities of the vibrational stretching bands involving acid and amine groups of Pen tautomers. The highest electron transitions involving HOMO-LUMO orbitals show to be of major importance in the computed UV spectra, showing a large red-shift around 30nm as the zwitterionic and neutral Pen spectra are compared. NMR results show to be quite useful for identification of Pen tautomers since clear differences are found by means of the computed shielding tensors as well as spin-spin coupling constants 1J(N,H) data.


Assuntos
Penicilamina/análise , Penicilamina/química , Análise Espectral/métodos , Modelos Moleculares , Estereoisomerismo
3.
J Comput Chem ; 37(26): 2360-73, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27510431

RESUMO

Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.

4.
Rapid Commun Mass Spectrom ; 28(15): 1769-76, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975258

RESUMO

RATIONALE: An interesting class of volatile compounds, the monoterpenes, is present in some plants although their functions are not yet fully understood. We have studied the interaction of the camphor molecule with monochromatic high-energy photons (synchrotron radiation) using time-of-flight mass spectrometry and coincidence techniques. METHODS: A commercial sample of S-camphor was admitted into the vacuum chamber, without purification, through an inlet system. Monochromatic light with energy around the C 1s edge was generated by the TGM beamline at the Brazilian Synchrotron Facility. A Wiley-McLaren mass spectrometer was used to characterize and detect the ions formed by the camphor photoionization. The data analysis was supported by energy calculations. RESULTS: Although the fragmentation patterns were basically the same at 270 eV and 330 eV, it was observed that above the C 1s edge the contribution to the spectrum from lower mass/charge fragment ions increased, pointing to a higher degree of dissociation of the molecule. Projections of the PEPIPICO spectra demonstrated the existence of unstable doubly charged species. The Gibbs free energy was calculated using the Møller-Plesset perturbation theory (MP2) for the neutral, singly and doubly excited camphor molecule. CONCLUSIONS: Our PEPIPICO spectrum clearly demonstrated the formation of doubly ionic dissociative species. From a slope analysis, we propose a secondary decay after a deferred charge separation mechanism in which, after a few steps, the camphor dication dissociates into C2 H3 (+) and C3 H5 (+) . This is the main relaxation route observed at 270 eV and 330 eV. The large energy difference between the mono and the dication (of the order of 258.2 kcal/mol) may explain the experimentally observed absence of stable dications in the spectra, because their formation is disadvantaged energetically.


Assuntos
Cânfora/química , Carbono/química , Espectrometria de Massas/métodos , Modelos Químicos , Modelos Moleculares , Síncrotrons , Cânfora/efeitos da radiação , Carbono/análise , Carbono/efeitos da radiação , Simulação por Computador , Íons , Fótons
5.
J Phys Chem A ; 115(8): 1331-9, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21294538

RESUMO

Specific and basicity solvent effects on the visible near-infrared electronic transitions and the electron paramagnetic resonance (EPR) parameters of the copper(II) acetylacetonate complex, Cu(acac)2, have been investigated at the density functional theory level. The computed absorption transitions as well as the EPR parameters show a strong dependence on the direct coordination environment around the Cu(II) complex. High solvatocromic shifts are observed for 3d-3d transitions, with the highest effect observed for the dz(2)→dxy transition, which is red-shifted by 6000 cm(-1) and 9000 cm(-1) in water and pyridine solvent models, respectively. Compared to the electronic g-tensors, the hyperfine coupling constants of the Cu(acac)2 complex show a more pronounced dependence on the effect of base strength of solvent. Overall, the present methodology satisfactorily models the solvent effect on the optical and magnetic properties of the Cu(acac)2 complex, and theory and experiment agree sufficiently well to warrant the use of the computed optical and EPR parameters to elucidate the coordination environment of the Cu(II) systems in basic solutions.


Assuntos
Complexos de Coordenação/química , Fenômenos Magnéticos , Modelos Químicos , Fenômenos Ópticos , Solventes/química , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Hidroxibutiratos , Luz , Estrutura Molecular , Pentanonas , Piridinas/química , Teoria Quântica , Soluções , Análise Espectral , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA