Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2303: 687-694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626416

RESUMO

Glycosaminoglycans (GAGs) play crucial roles in several biological processes including cell division, angiogenesis, anticoagulation, neurogenesis, axon guidance and growth, and viral and bacterial infections among others. The GAG cleaving hydrolases/lyases play a major role in the control of GAG structures, functions, and turn over. Dysregulation of GAG cleaving enzymes in vivo are linked to a number of human diseases including cancer, diabetes, atherosclerosis, arthritis, inflammation, and cardiovascular diseases. Several GAG cleaving enzymes are widely used for studying GAG glycobiology: heparitinases, chondroitinases, heparanases, hyaluronidases, and keratanases. Herein, we describe a method to synthesize four distinct nanometal surface energy transfer (NSET)-based gold-GAG-dye conjugates (nanosensors). Heparin, chondroitin sulfate, heparan sulfate, and hyaluronic acid are covalently linked with distinct fluorescent dyes and then immobilized on gold nanoparticles (AuNPs) to build nanosensors that serve as excellent substrates for GAG cleaving enzymes. Upon treatment of nanosensors with their respective GAG cleaving enzymes, dye-labeled oligosaccharides/disaccharides are released from AuNPs resulting in enhanced fluorescence recovery. These nanosensors have a great promise as diagnostic tools in various human pathophysiological conditions for detecting dysregulated expression of GAG cleaving enzymes and also as a sensitive analytical tool for assessing the quality control of pharmaceutical grade heparin polysaccharides that are produced in millions of small- and medium-sized animal slaughter houses worldwide.


Assuntos
Nanopartículas Metálicas , Animais , Sulfatos de Condroitina , Glicosaminoglicanos , Ouro , Heparina , Heparitina Sulfato , Humanos
2.
J Med Chem ; 64(14): 9916-9925, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34210138

RESUMO

PLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines. Furthermore, abbapolins show PLK1-specific binding and inhibitory activity, as measured by a cellular thermal shift assay and an ability to block phosphorylation of TCTP, a validated target of PLK1-mediated kinase activity. Additional evidence for engagement of PLK1 was obtained through the unique observation that abbapolins induce PLK1 degradation in a manner that closely matches antiproliferative activity. Moreover, abbapolins demonstrate antiproliferative activity in cells that are dramatically resistant to ATP-competitive PLK1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Ácido Benzoico/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Benzoico/síntese química , Ácido Benzoico/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Proteína Tumoral 1 Controlada por Tradução , Quinase 1 Polo-Like
3.
SLAS Technol ; 25(4): 397-403, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32589074

RESUMO

Heparin has been in clinical use as an anticoagulant for the last eight decades and used worldwide in more than 100 million medical procedures every year. This lifesaving drug is predominantly obtained from ~700 million pig intestines or bovine organs through millions of small and medium-sized slaughterhouses. However, the preparations from animal sources have raised many safety concerns, including the contamination of heparin with potential pathogens, proteins, and other impurities. In fact, contaminated heparin preparations caused 149 deaths in several countries, including the United States, Germany, and Japan in 2008, highlighting the need for implementing sensitive and simple analytical techniques to monitor and safeguard the heparin supply chain. The contaminant responsible for the adverse effects in 2008 was identified as oversulfated chondroitin sulfate (OSCS). We have developed a very sensitive, facile method of detecting OSCS in heparin lots using a nanosensor, a gold nanoparticle-heparin dye conjugate. The sensor is an excellent substrate for heparitinase enzyme, which cleaves the heparin polymer into smaller disaccharide fragments, and therefore facilitates recovery of fluorescence from the dye upon heparitinase treatment. However, the presence of OSCS results in diminished fluorescence recovery from the nanosensor upon heparitinase treatment, because OSCS inhibits the enzyme. The newly designed nanosensor can detect as low as 1 × 10-9% (w/w) OSCS, making it the most sensitive tool available to date for the detection of trace amounts of OSCS in pharmaceutical heparins. In this report, we describe a simple methodology for the preparation of nanosensor and its application in the detection of OSCS contaminants.


Assuntos
Técnicas Biossensoriais/instrumentação , Heparina/análise , Nanotecnologia/instrumentação , Fluorescência , Ouro/química , Nanopartículas Metálicas/química
4.
J Am Chem Soc ; 139(41): 14556-14567, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28926242

RESUMO

The amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP). In contrast, CPPase is an inefficient promiscuous enzyme, which synthesizes the "irregular" monoterpenes chrysanthemyl diphosphate (CPP), lavandulyl diphosphate (LPP), and trace quantities of maconelliyl diphosphate (MPP) from two molecules of DMAPP, and couples IPP to DMAPP to give GPP. A. tridentata FPPase and CPPase belong to the chain elongation protein family (PF00348), a subgroup of the terpenoid synthase superfamily (CL0613) whose members have a characteristic α terpene synthase α-helical fold. The active sites of A. tridentata FPPase and CPPase are located within a six-helix bundle containing amino acids 53 to 241. The two enzymes were metamorphosed into one another by sequentially replacing the loops and helices of the six-helix bundle from enzyme with those from the other. Chain elongation was the dominant activity during the N-terminal to C-terminal metamorphosis of FPPase to CPPase, with product selectivity gradually switching from FPP to GPP, until replacement of the final α-helix, whereupon cyclopropanation and branching activity competed with chain elongation. During the corresponding metamorphosis of CPPase to FPPase, cyclopropanation and branching activities were lost upon replacement of the first helix in the six-helix bundle. Mutations of active site residues in CPPase to the corresponding amino acids in FPPase enhanced chain-elongation activity, while similar mutations in the active site of FPPase failed to significantly promote formation of significant amounts of irregular monoterpenes. Our results indicate that CPPase, a promiscuous enzyme, is more plastic toward acquiring new activities, whereas FPPase is more resistant. Mutations of residues outside of the α terpene synthase fold are important for acquisition of FPPase activity for synthesis of CPP, LPP, and MPP.


Assuntos
Artemisia/enzimologia , Difosfatos/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Morfogênese , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Artemisia/genética , Geraniltranstransferase/genética , Mutação , Relação Estrutura-Atividade
5.
J Org Chem ; 81(12): 5093-100, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27137644

RESUMO

Chain elongation prenyltransferases catalyze the addition of the hydrocarbon moiety of allylic isoprenoid diphosphates to the carbon-carbon double bond in isopentenyl diphosphate (IPP) in the primary building reactions in the isoprenoid biosynthetic pathway. Bis-O-diphosphate analogues 3-OPP/OPP, 4-OPP/OPP, and 5-OPP/OPP and bis-thiolodiphosphate bisubstrate analogues 3-SPP/SPP, 4-SPP/SPP, and 5-SPP/SPP were synthesized. The analogues 4-OPP/OPP, 5-OPP/OPP, 4-SPP/SPP, and 5-SPP/SPP were excellent competitive inhibitors of avian farnesyl diphosphate synthase with KI = 1.0 ± 0.12 µM, KI = 0.5 ± 0.2 µM, KI = 0.7 ± 0.3 µM, and KI = 2.9 ± 0.27 µM, respectively, whereas, analogues 3-OPP/OPP and 3-SPP/SPP displayed mixed type inhibition with KI = 1.4 µM and KI = 5.5 µM, respectively.


Assuntos
Inibidores Enzimáticos/síntese química , Terpenos/síntese química , Catálise , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Hemiterpenos , Cinética , Compostos Organofosforados , Relação Estrutura-Atividade , Especificidade por Substrato , Terpenos/farmacologia , Difração de Raios X
6.
Org Lett ; 18(3): 512-5, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26756303

RESUMO

Squalene (SQ) is a key intermediate in hopanoid biosynthesis. Many bacteria synthesize SQ from farnesyl diphosphate (FPP) in three steps: FPP to (1R,2R,3R)-presqualene diphosphate (PSPP), (1R,2R,3R)-PSPP to hydroxysqualene (HSQ), and HSQ to SQ. Chemical, biochemical, and spectroscopic methods were used to establish that HSQ synthase synthesizes (S)-HSQ. In contrast, eukaryotic squalene synthase catalyzes solvolysis of (1R,2R,3R)-PSPP to give (R)-HSQ. The bacterial enzyme that reduces HSQ to SQ does not accept (R)-HSQ as a substrate.


Assuntos
Esqualeno/análogos & derivados , Catálise , Farnesil-Difosfato Farnesiltransferase/metabolismo , Lipogênese , Estrutura Molecular , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Esqualeno/química , Estereoisomerismo , Triterpenos/química
7.
ACS Cent Sci ; 1(2): 77-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258173

RESUMO

Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-hpnC, hpnD, hpnE, and hpnF-for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While hpnF is known to encode a squalene cyclase, the functions for hpnC, hpnD, and hpnE are not rigorously established. The hpnC, hpnD, and hpnE genes from Zymomonas mobilis and Rhodopseudomonas palustris were cloned into Escherichia coli, a bacterium that does not contain genes homologous to hpnC, hpnD, and hpnE, and their functions were established in vitro and in vivo. HpnD catalyzes formation of presqualene diphosphate (PSPP) from two molecules of FPP; HpnC converts PSPP to hydroxysqualene (HSQ); and HpnE, a member of the amine oxidoreductase family, reduces HSQ to SQ. Collectively the reactions catalyzed by these three enzymes constitute a new pathway for biosynthesis of SQ in bacteria.

8.
Proc Natl Acad Sci U S A ; 112(18): 5661-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901324

RESUMO

Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products. We tackle this problem by developing an algorithm to enumerate possible carbocations derived from the farnesyl cation, the first reactive intermediate of the substrate, and evaluating their steric and electrostatic compatibility with the active site. The homology model of a putative pentalenene synthase (Uniprot: B5GLM7) from Streptomyces clavuligerus was used in an automated computational workflow for product prediction. Surprisingly, the workflow predicted a linear triquinane scaffold as the top product skeleton for B5GLM7. Biochemical characterization of B5GLM7 reveals the major product as (5S,7S,10R,11S)-cucumene, a sesquiterpene with a linear triquinane scaffold. To our knowledge, this is the first documentation of a terpene synthase involved in the synthesis of a linear triquinane. The success of our prediction for B5GLM7 suggests that this approach can be used to facilitate the functional assignment of novel terpene synthases.


Assuntos
Alquil e Aril Transferases/química , Streptomyces/enzimologia , Algoritmos , Carbono/química , Domínio Catalítico , Cátions , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Estrutura Terciária de Proteína , Software , Relação Estrutura-Atividade
9.
J Org Chem ; 80(8): 3902-13, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25734506

RESUMO

Farnesyl diphosphate synthase catalyzes the sequential chain elongation reactions between isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) to form geranyl diphosphate (GPP) and between IPP and GPP to give farnesyl diphosphate (FPP). Bisubstrate analogues containing the allylic and homoallylic substrates were synthesized by joining fragments for IPP and the allylic diphosphates with a C-C bond between the methyl group at C3 in IPP and the Z-methyl group at C3 in DMAPP (3-OPP) and GPP (4-OPP), respectively. These constructs placed substantial limits on the conformational space available to the analogues relative to the two substrates. The key features of the synthesis of bisubstrate analogues 3-OPP and 4-OPP are a regioselective C-alkylation of the dianion of 3-methyl-3-buten-1-ol (5), a Z-selective cuprate addition of alkyl groups to an α,ß-alkynyl ester intermediate, and differential activation of allylic and homoallylic alcohols in the analogues, followed by a simultaneous displacement of the leaving groups with tris(tetra-n-butylammonium) hydrogen diphosphate to give the corresponding bisdiphosphate analogues. The bisubstrate analogues were substrates for FPP synthase, giving novel seven-membered ring analogues of GPP and FPP. The catalytic efficiencies for cyclization of 3-OPP and 4-OPP were similar to those for chain elongation with IPP and DMAPP.


Assuntos
Butanóis/química , Geraniltranstransferase/síntese química , Fosfatos de Poli-Isoprenil/química , Compostos de Amônio Quaternário/química , Sesquiterpenos/química , Catálise , Ciclização , Geraniltranstransferase/química , Especificidade por Substrato
10.
Biochemistry ; 52(29): 5002-8, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23802587

RESUMO

Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and nonionic detergents, we discovered considerable variability. Examination of a series of nonionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain-lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast, incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-ß-glucopyranoside, or ß-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain-lengths.


Assuntos
Detergentes/química , Ligases/química , Trifosfato de Adenosina/biossíntese , Soluções Tampão , Cinética , Fosforilação Oxidativa , Fosfolipídeos/química , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 110(13): E1196-202, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23493556

RESUMO

The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans-polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging. We addressed this challenge through large-scale bioinformatics analysis of >5,000 putative polyprenyl transferases; experimental characterization of the chain-length specificity of 79 diverse members of this group; determination of 27 structures of 19 of these enzymes, including seven cocrystallized with substrate analogs or products; and the development and successful application of a computational approach to predict function that leverages available structural data through homology modeling and docking of possible products into the active site. The crystallographic structures and computational structural models of the enzyme-ligand complexes elucidate the structural basis of specificity. As a result of this study, the percentage of E-PTS sequences similar to functionally annotated ones (BLAST e-value ≤ 1e(-70)) increased from 40.6 to 68.8%, and the percentage of sequences similar to available crystal structures increased from 28.9 to 47.4%. The high accuracy of our blind prediction of newly characterized enzymes indicates the potential to predict function to the complete polyprenyl transferase subgroup of the isoprenoid synthase superfamily computationally.


Assuntos
Alquil e Aril Transferases/genética , Carbono-Carbono Ligases/genética , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular/métodos , Análise de Sequência de Proteína/métodos , Alquil e Aril Transferases/metabolismo , Carbono-Carbono Ligases/metabolismo , Cristalografia por Raios X
12.
Tetrahedron Asymmetry ; 19(2): 2546-2554, 2008 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-24163502

RESUMO

All 4 diastereomeric possibilities for the 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid (Dhtda) residue, found in the cyclic depsipeptide natural products papuamides A-D and mirabamides A-D, were stereoselectively synthesized using a Z-selective Wittig reaction of both enantiomers of 2,4-dimethylhex-2-enyl-triphenylphosphonium bromide with all four diastereoisomers of ethyl-3-formyl-2-methyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate. To elucidate the configuration of Dhtda, the 1H- and 13C-NMR spectra of the synthetic isomers were compared to those of the natural residue. On the basis of that comparison, it is suggested that the likely configuration of the diastereomer present in Dhtda residue is either (2R,3S,8S) or (2S,3R,8S) in the papuamides and mirabimides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA