Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Res ; 259: 119485, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917933

RESUMO

Soil deterioration is a major cause of poor agricultural productivity, necessitating sufficient nutrient inputs like fertilizers and amendments for sustainable use. As one such strategy, the current study evaluates the potential of Sargassum wightii, a brown seaweed extract, as an osmopriming agent to improve seed germination, early establishment, and competent seedling performances in acidic soil. The elemental makeup of seaweed extract (BS) showed that it included major plant macro (Potassium, Nitrogen and Phosphorous), as well as micronutrients (Magnesium and Iron) and trace elements (Zinc, Copper, and Molybdenum). While seed germination was impacted by H+ ion toxicity, seeds primed with BS emerged earlier and showed a higher germination percentage (98.2%) and energy (92.4%). BS treatments enhanced seedling growth by 63% and had a positive effect on root growth (68.2%) as well as increases in root surface area (10%) and volume (67.01%). Stressed seedlings had 76.39% and 63.2% less carotenoid and chlorophyll, respectively. In seedlings treated with BS, an increase in protein and Total Soluble Sugars content of 14.56 and 7.19%, respectively, was seen. Fourier Transform-Infra Red analysis of postharvest soil indicated improved soil health with absorbance corresponding to enhanced soil water holding capacity and organic matter. Increased abscisic acid synthesis rate and associated antioxidant enzyme system (Malondialdehyde, Glutathione peroxidases and ascorbate peroxidase) activation, along with enhanced H+ adenosine triphosphate-ase and glutathione activities, help ameliorate and deport H+ ions from cells, scavenge Reactive Oxygen Species, thus protecting cells from injury. Seaweed extract successfully reduced H+-induced ion toxicities in rice by promoting their germination, physiological, metabolically, and growth parameters that could ultimately increase their productivity and yield in a sustainable and environmentally friendly manner.

2.
Environ Res ; 247: 118179, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218516

RESUMO

Globally, soil acidification is a serious environmental issue that reduces commercial agricultural production. Rice is subjected to nutritional stress due to acidic soil, which is a major impediment to rice production. Since acid soil threatens rice plants with soil compaction, nutrient loss, and plant stress-induced oxidative cell damage that results in affecting the photosynthetic system, restricting the availability of water, and reducing overall plant growth and productivity. Since contemporary soil acidification management strategies provide mediocre results, the use of Sargassum wightii seaweed-based biostimulants (BS) and soil amendments is sought as an environmentally friendly alternative strategy, and therefore its potential isevaluated in this study. BS was able to mediate soil quality by improving soil pH and structure along with facilitating nitrogen phytoavailability. BS also increased the activity of the antioxidant enzyme system, superoxide dismutase ((48%), peroxidase (76.6%), and ascorbate peroxidase (63.5%), aggregating the monaldehyde-mediating accumulation of osmoprotective proline in roots, that was evident from rapid initiation of root hair growth in treated seedlings. BS was also able to physiologically modulate photosynthetic activities and chlorophyll production (24.31%) in leaves, maintaining the efficiency of plant water use by regulating the stomatal conductance (0.91 mol/m/s) and the transpiration rate (13.2 mM/m/s). The BS compounds were also successful in facilitating nitrogen uptake resulting in improved plant growth (59%), tiller-panicle number, and yield (52.57%), demonstrating a resourceful nitrogen use efficiency (71.96%) previously affected by stress induced by acid soil. Therefore, the study affirms the competent potential of S. wightii-based soil amendment to be applied not only to improve soil quality, but also to increase plant production and yield.


Assuntos
Oryza , Solo , Fotossíntese/fisiologia , Antioxidantes/metabolismo , Nitrogênio , Verduras , Água
4.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

5.
ACS Catal ; 11(21): 13423-13433, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34777909

RESUMO

Supported catalytically active liquid metal solutions (SCALMS) of Pt in Ga (2 at.-% Pt) were studied in the temperature range of 500 to 600 °C for propane dehydrogenation. A facile synthesis procedure using ultrasonication was implemented and compared to a previously reported organo-chemical route for gallium deposition. The procedure was applied to synthesize GaPt-SCALMS catalyst on silica (SiO2), alumina (Al2O3), and silicon carbide (SiC) to investigate the effect of the support material on the catalytic performance. The SiC-based SCALMS catalyst showed the highest activity, while SiO2-based SCALMS showed the highest stability and lowest cracking tendency at higher temperatures. The selectivity toward propene for the SiO2-based catalyst remained above 93% at 600 °C. The catalysts were analyzed for coke content after use by temperature-programmed oxidation (TPO) and Raman spectroscopy. While the SiC- and SiO2-supported SCALMS systems showed hardly any coke formation, the Al2O3-supported systems suffered from pronounced coking. SEM-EDX analyses of the catalysts before and after reaction indicated that no perceivable morphological changes occur during reaction. The SCALMS catalysts under investigation are compared with supported Pt and supported GaPt solid-phase catalyst, and possible deactivation pathways are discussed.

6.
Faraday Discuss ; 229: 359-377, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666203

RESUMO

Supported liquid phase catalysis has great potential to unify the advantages from both homogeneous and heterogeneous catalysis. Recently, we reported supported catalytically active liquid metal solutions (SCALMS) as a new class of liquid phase catalysts. SCALMS enable high temperature application due to the high thermal stability of liquid metals when compared to supported molten salts or ionic liquids. The highly dynamic liquid metal/gas interface of SCALMS allows for catalysis over single atoms of an active metal atom within a matrix of liquid gallium. In the present study, kinetic data is acquired along the catalyst bed in a compact profile reactor during propane dehydrogenation (PDH) over gallium-platinum SCALMS. The reactor design allows for the analysis of the temperature and gas phase composition along the catalyst bed with a high spatial resolution using a sampling capillary inside the reactor. The concentration profiles suggest enhanced deactivation of the catalyst at the end of the bed with a deactivation front moving from the end to the beginning of the catalyst bed over time on stream. Only minor amounts of side products, formed via cracking of propane, were identified, supporting previously reported high selectivity of SCALMS during alkane dehydrogenation. The acquired data is supported by in situ high-resolution thermogravimetry coupled with mass spectrometry to monitor the activity and coking behaviour of SCALMS during PDH. The results strongly suggest an enhanced formation of coke over Al2O3-supported SCALMS when compared to using SiO2 as the support material.

7.
ChemCatChem ; 12(4): 1085-1094, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32194874

RESUMO

Supported Catalytically Active Liquid Metal Solutions (SCALMS) were recently described as a new class of heterogeneous catalysts, where the catalytic transformation takes place at the highly dynamic interface of a liquid alloy. Their application in alkane dehydrogenation has been claimed to be superior to classical heterogeneous catalysts, because the single atom nature of Rh dissolved in liquid Ga hinders the formation of significant amounts of coke, e. g. by oligomerisation of carbon fragments and excessive dehydrogenation. In the present study, we investigate the coking behaviour of Ga-Rh SCALMS during dehydrogenation of propane in detail by means of high-resolution thermogravimetry. We report that the application of Ga-Rh SCALMS indeed limits the formation of coke when compared to the Ga-free Rh catalyst, in particular when relating coke formation to the catalytic performance. Furthermore, the formed coke has been shown to be highly reactive during temperature programmed oxidation in 21 % O2/He with onset temperatures of approx. 150 °C enabling a regeneration of the Ga-Rh SCALMS system under mild conditions. The activation energy of the oxidation lies in the lower range of values reported for spent cracking catalysts. Monitoring the formation of coke and performance of SCALMS in situ via thermogravimetry coupled with mass spectrometry revealed the continuous formation of coke, which becomes the only process affecting the net weight change after a certain time on stream.

8.
ACS Catal ; 9(10): 9499-9507, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-32219008

RESUMO

Our contribution demonstrates that rhodium, an element that has barely been reported as an active metal for selective dehydrogenation of alkanes becomes a very active, selective, and robust dehydrogenation catalyst when exposed to propane in the form of single atoms at the interface of a solid-supported, highly dynamic liquid Ga-Rh mixture. We demonstrate that the transition to a fully liquid supported alloy droplet at Ga/Rh ratios above 80, results in a drastic increase in catalyst activity with high propylene selectivity. The combining results from catalytic studies, X-ray photoelectron spectroscopy, IR-spectroscopy under reaction conditions, microscopy, and density-functional theory calculations, we obtained a comprehensive microscopy picture of the working principle of the Ga-Rh supported catalytically active liquid metal solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA