Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 2793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867001

RESUMO

There is an urgent need for the development of potent vaccination regimens that are able to induce specific T and B cell responses against human immunodeficiency virus type 1 (HIV-1). Here, we describe the generation and characterization of a fusion antigen comprised of the HIV-1 envelope GP120 glycoprotein from clade C (GP120C) fused at its C-terminus, with the modified vaccinia virus (VACV) 14K protein (A27L gene) (termed GP120C14K). The design is directed toward improving the immunogenicity of the GP120C protein through its oligomerization facilitated by the fused VACV 14K protein that results in hexamer-like structures. Two different immunogens were generated: a recombinant GP120C14K fusion protein (purified from a stable CHO-K1 cell line) and a recombinant modified vaccinia virus Ankara (MVA) poxvirus vector expressing the GP120C14K fusion protein (termed MVA-GP120C14K). The GP120C14K fusion protein is recognized by broadly neutralizing antibodies (bNAbs) against HIV-1. In a murine model, a heterologous prime/boost immunization regimen with MVA-GP120C14K prime followed by adjuvanted GP120C14K protein boost generated stronger and polyfunctional HIV-1 Env-specific CD8 T cell responses when compared with the delivery of the monomeric GP120C form. Furthermore, the immunization protocol MVA-GP120C14K/GP120C14K elicited higher HIV-1 Env-specific T follicular helper cells, germinal center B cells and antibody responses than monomeric GP120. In addition, a similar MVA-GP120C14K prime/GP120C14K protein boost regimen performed in rabbits triggered high HIV-1-Env-specific IgG binding antibody titers that were capable of neutralizing HIV-1 pseudoviruses. The extent of HIV-1 neutralization was comparable to that elicited by the current standard GP140 SOSIP trimers from clades B and C when immunized as MVA-SOSIP prime/SOSIP protein boost regimen. Overall, the novel fusion antigen and the corresponding immunization scheme provided in this report can therefore be considered as potential vaccine strategies against HIV-1.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/biossíntese , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Vaccinia virus/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Células CHO , Cricetulus , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes de Fusão/química
2.
Viruses ; 10(8)2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104537

RESUMO

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , Imunogenicidade da Vacina , Vacinas contra a AIDS/administração & dosagem , Animais , Feminino , Vetores Genéticos , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/imunologia , Vaccinia virus
3.
Clin Vaccine Immunol ; 24(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28298290

RESUMO

Vaccines against the preerythrocytic stages of malaria are appealing because the parasite can be eliminated before disease onset and because they offer the unique possibility of targeting the parasite with both antibodies and T cells. Although the role of CD8+ T cells in preerythrocytic malaria stages is well documented, a highly effective T cell-inducing vaccine remains to be advanced. Here we report the development of a prime-boost immunization regimen with the Plasmodium falciparum circumsporozoite protein (PfCS) fused to the oligomer-forming vaccinia virus A27 protein and a modified vaccinia virus Ankara (MVA) vector expressing PfCS. This protocol induced polyfunctional CD8+ T cells with an effector memory phenotype and high PfCS antibody levels. These immune responses correlated with inhibition of liver-stage parasitemia in 80% and sterile protection in 40% of mice challenged with a transgenic P. berghei parasite line that expressed PfCS. Our findings underscore the potential of T and B cell immunization strategies for improving protective effectiveness against malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Malária Falciparum/prevenção & controle , Camundongos , Vacinas de DNA/imunologia
4.
PLoS One ; 10(7): e0133595, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208356

RESUMO

In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1ß, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.


Assuntos
Proteínas de Transporte/imunologia , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Virais de Fusão/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD4/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Anticorpos Anti-HIV/imunologia , Antígenos HIV/genética , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Imunidade Inata , Imunoglobulina G/imunologia , Memória Imunológica , Proteínas de Membrana , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Proteínas Virais de Fusão/genética
5.
Nat Commun ; 5: 3099, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24434425

RESUMO

Asparagine-linked N-glycosylation is a common modification of proteins that promotes productive protein folding and increases protein stability. Although N-glycosylation is important for glycoprotein folding, the precise sites of glycosylation are often not conserved between protein homologues. Here we show that, in Saccharomyces cerevisiae, proteins upregulated during sporulation under nutrient deprivation have few N-glycosylation sequons and in their place tend to contain clusters of like-charged amino-acid residues. Incorporation of such sequences complements loss of in vivo protein function in the absence of glycosylation. Targeted point mutation to create such sequence stretches at glycosylation sequons in model glycoproteins increases in vitro protein stability and activity. A dependence on glycosylation for protein stability or activity can therefore be rescued with a small number of local point mutations, providing evolutionary flexibility in the precise location of N-glycans, allowing protein expression under nutrient-limiting conditions, and improving recombinant protein production.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Parede Celular/metabolismo , Dicroísmo Circular , Teste de Complementação Genética , Glicosilação , Humanos , Interferon beta/química , Interferon beta/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estabilidade Proteica , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
6.
Thromb Res ; 128(4): e49-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762961

RESUMO

INTRODUCTION: Thrombospondin 1 and 2 are multidomain calcium-binding extracellular glycoproteins and they play a role in platelet aggregation, inflammatory response and assembly of connective tissue extracellular matrix. The association of thrombospondins (TSP) in the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) is well established. The association of the TSP-1 (Asn700Ser, 2210A → G, rs2228262) and TSP-2 un-translated region (UTR) (3949T → G, rs8089) gene variations among South Indian CAD and MI patients has been examined in the present study. MATERIALS AND METHODS: We analyzed the thrombospondin polymorphisms in unrelated CAD patients (n = 511) and a subgroup with an event of MI (n = 173) compared with controls (n = 522). The polymorphisms were assessed using polymerase chain reaction, restriction fragment length analysis and the circulating TSP concentration were measured using enzyme linked immune-sorbent assay. RESULTS: The prevalence of TSP-1 and TSP-2 alleles did not show any significant difference statistically, when compared controls against CAD/MI patients. The rare GG genotype of the N700S polymorphism was not observed among the studied population. Further, multiple regression analysis revealed that there was no significant risk for CAD (OR = 1.68; 95% CI 0.927 - 3.055; p = 0.087) or MI (OR = 1.84; 95% CI 0.846 - 4.007; p = 0.124) for the GA genotype. The GA genotype showed no impact on clinical characteristics of the CAD patients and their circulating TSP-1 levels. A similar non-association was observed for the TSP-2 in 3949T → G polymorphism (GG genotype) for CAD (OR = 0.64; 95% CI 0.278 - 1.455; p = 0.636) and MI (OR = 0.53; 95% CI 0.166 - 1.675; p = 0.278). CONCLUSIONS: Our data suggests that the presence of thrombospondin-1 (rs2228262) and thrombospondin-2 (rs8089) variants need not be considered a risk for coronary artery disease or myocardial infarction among South Indians.


Assuntos
Doença da Artéria Coronariana/etnologia , Doença da Artéria Coronariana/genética , Infarto do Miocárdio/etnologia , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Trombospondina 1/genética , Trombospondinas/genética , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Doença da Artéria Coronariana/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Índia/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Razão de Chances , Fenótipo , Reação em Cadeia da Polimerase , Medição de Risco , Fatores de Risco , Trombospondina 1/sangue , Trombospondinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA