Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Mol Biosci ; 9: 959956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992270

RESUMO

Traditionally, our understanding of how proteins operate and how evolution shapes them is based on two main data sources: the overall protein fold and the protein amino acid sequence. However, a significant part of the proteome shows highly dynamic and/or structurally ambiguous behavior, which cannot be correctly represented by the traditional fixed set of static coordinates. Representing such protein behaviors remains challenging and necessarily involves a complex interpretation of conformational states, including probabilistic descriptions. Relating protein dynamics and multiple conformations to their function as well as their physiological context (e.g., post-translational modifications and subcellular localization), therefore, remains elusive for much of the proteome, with studies to investigate the effect of protein dynamics relying heavily on computational models. We here investigate the possibility of delineating three classes of protein conformational behavior: order, disorder, and ambiguity. These definitions are explored based on three different datasets, using interpretable machine learning from a set of features, from AlphaFold2 to sequence-based predictions, to understand the overlap and differences between these datasets. This forms the basis for a discussion on the current limitations in describing the behavior of dynamic and ambiguous proteins.

3.
J Proteome Res ; 21(8): 1894-1915, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793420

RESUMO

Protein phosphorylation is the most common reversible post-translational modification of proteins and is key in the regulation of many cellular processes. Due to this importance, phosphorylation is extensively studied, resulting in the availability of a large amount of mass spectrometry-based phospho-proteomics data. Here, we leverage the information in these large-scale phospho-proteomics data sets, as contained in Scop3P, to analyze and characterize proteome-wide protein phosphorylation sites (P-sites). First, we set out to differentiate correctly observed P-sites from false-positive sites using five complementary site properties. We then describe the context of these P-sites in terms of the protein structure, solvent accessibility, structural transitions and disorder, and biophysical properties. We also investigate the relative prevalence of disease-linked mutations on and around P-sites. Moreover, we assess the structural dynamics of P-sites in their phosphorylated and unphosphorylated states. As a result, we show how large-scale reprocessing of available proteomics experiments can enable a more reliable view on proteome-wide P-sites. Furthermore, adding the structural context of proteins around P-sites helps uncover possible conformational switches upon phosphorylation. Moreover, by placing sites in different biophysical contexts, we show the differential preference in protein dynamics at phosphorylated sites when compared to the nonphosphorylated counterparts.


Assuntos
Proteoma , Proteômica , Humanos , Espectrometria de Massas , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos
4.
Eur Arch Otorhinolaryngol ; 279(12): 5691-5699, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35666318

RESUMO

OBJECTIVE: To evaluate the time for recovery of the sense of smell in patients with CRSwNP who underwent Reboot surgery compared to patients undergoing ESS in a long-term follow-up study. METHODS: Data were collected retrospectively from 168 patients with severe uncontrolled CRSwNP, who underwent revision surgery, either as Extended Endoscopic Sinus Surgery (Reboot, 140 patients) or as regular Endoscopic Sinus Surgery (ESS, 28 patients) between January 1, 2014, and December 31, 2015, aiming to compare the outcome of surgeries after 2 years of follow-up. Sense of smell was scored as judged by the patient using scores 0 to 3 reflecting a percentage estimate of remaining smell. RESULTS: Smell improved similarly in the Reboot and ESS groups over the first 9 months, which was maintained over 24 months in the Reboot, but not the ESS group (p = 0.007 after 18 months, p = 0.001 after 24 months). Furthermore, polyp recurrence rates were significantly lower in the Reboot group. CONCLUSION: Reboot surgery significantly improved olfactory function and significantly reduced nasal polyp recurrence rates over 2 years post-operatively. Therefore, Reboot should be considered for patients with uncontrolled severe CRSwNP, specifically when ESS failed, to offer long-term smell and a polyp-free status. LEVEL OF EVIDENCE: 3b.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Pólipos Nasais/complicações , Pólipos Nasais/cirurgia , Olfato , Rinite/complicações , Rinite/cirurgia , Seguimentos , Estudos Retrospectivos , Resultado do Tratamento , Sinusite/complicações , Sinusite/cirurgia , Endoscopia , Doença Crônica
5.
Nat Commun ; 12(1): 6414, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741024

RESUMO

While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50-100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.


Assuntos
Saccharomyces cerevisiae/metabolismo , Humanos , Proteoma/genética , Proteoma/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia
6.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254058

RESUMO

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

7.
Nucleic Acids Res ; 49(W1): W52-W59, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34057475

RESUMO

We provide integrated protein sequence-based predictions via https://bio2byte.be/b2btools/. The aim of our predictions is to identify the biophysical behaviour or features of proteins that are not readily captured by structural biology and/or molecular dynamics approaches. Upload of a FASTA file or text input of a sequence provides integrated predictions from DynaMine backbone and side-chain dynamics, conformational propensities, and derived EFoldMine early folding, DisoMine disorder, and Agmata ß-sheet aggregation. These predictions, several of which were previously not available online, capture 'emergent' properties of proteins, i.e. the inherent biophysical propensities encoded in their sequence, rather than context-dependent behaviour (e.g. final folded state). In addition, upload of a multiple sequence alignment (MSA) in a variety of formats enables exploration of the biophysical variation observed in homologous proteins. The associated plots indicate the biophysical limits of functionally relevant protein behaviour, with unusual residues flagged by a Gaussian mixture model analysis. The prediction results are available as JSON or CSV files and directly accessible via an API. Online visualisation is available as interactive plots, with brief explanations and tutorial pages included. The server and API employ an email-free token-based system that can be used to anonymously access previously generated results.


Assuntos
Proteínas/química , Alinhamento de Sequência , Análise de Sequência de Proteína/métodos , Software , Internet
8.
BMC Mol Cell Biol ; 22(1): 23, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892639

RESUMO

BACKGROUND: The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof, have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is not evident from static structure representations, nor from molecular dynamics simulations using these structures. MAIN: We present a website ( https://bio2byte.be/sars2/ ) that provides protein sequence-based predictions of the backbone and side-chain dynamics and conformational propensities of these proteins, as well as derived early folding, disorder, ß-sheet aggregation, protein-protein interaction and epitope propensities. These predictions attempt to capture the inherent biophysical propensities encoded in the sequence, rather than context-dependent behaviour such as the final folded state. In addition, we provide the biophysical variation that is observed in homologous proteins, which gives an indication of the limits of their functionally relevant biophysical behaviour. CONCLUSION: The https://bio2byte.be/sars2/ website provides a range of protein sequence-based predictions for 27 SARS-CoV-2 proteins, enabling researchers to form hypotheses about their possible functional modes of action.


Assuntos
SARS-CoV-2/química , Proteínas Virais/química , Bases de Dados de Proteínas , Humanos , Acesso à Internet , Alinhamento de Sequência , Análise de Sequência de Proteína , Software , Proteínas Virais/metabolismo
9.
Nucleic Acids Res ; 49(D1): D361-D367, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237329

RESUMO

The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Algoritmos , Internet , Anotação de Sequência Molecular , Processamento de Proteína Pós-Traducional , Software
10.
J Proteome Res ; 19(8): 3478-3486, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32508104

RESUMO

Protein phosphorylation is a key post-translational modification in many biological processes and is associated to human diseases such as cancer and metabolic disorders. The accurate identification, annotation, and functional analysis of phosphosites are therefore crucial to understand their various roles. Phosphosites are mainly analyzed through phosphoproteomics, which has led to increasing amounts of publicly available phosphoproteomics data. Several resources have been built around the resulting phosphosite information, but these are usually restricted to the protein sequence and basic site metadata. What is often missing from these resources, however, is context, including protein structure mapping, experimental provenance information, and biophysical predictions. We therefore developed Scop3P: a comprehensive database of human phosphosites within their full context. Scop3P integrates sequences (UniProtKB/Swiss-Prot), structures (PDB), and uniformly reprocessed phosphoproteomics data (PRIDE) to annotate all known human phosphosites. Furthermore, these sites are put into biophysical context by annotating each phosphoprotein with per-residue structural propensity, solvent accessibility, disordered probability, and early folding information. Scop3P, available at https://iomics.ugent.be/scop3p, presents a unique resource for visualization and analysis of phosphosites and for understanding of phosphosite structure-function relationships.


Assuntos
Fosfoproteínas , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Bases de Dados de Proteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3099-3108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859241

RESUMO

Adult expression of IMP2 is often associated with several types of disease and cancer. The RNA binding protein IMP2 binds and stabilizes the IGF2 mRNA as well as hundreds of other transcripts during development. To gain insight into the molecular action of IMP2 and its contribution to disease in context of adult cellular metabolism, we analyze transgenic overexpression of IMP2 in mouse livers, which has been shown to induce a steatosis-like phenotype and enhanced risk to develop hepatocellular carcinoma (HCC). Our data show up-regulation of several HCC marker genes and miRNAs (miR438-3p and miR151-5p). To characterize the impact of miRNAs to their targets, integrative analysis of transcriptome-and miRNAome-dynamics in combination with IMP2 target prediction was carried out. Our analyses show that targets of expressed miRNAs become accumulated in the case that these transcripts have positive IMP2 binding prediction. Therefore, our data indicates that overexpression of IMP2 alters the regulatory capacity of many miRNAs and we conclude that IMP2 competes with miRNAs for binding sites on thousands of transcripts. As a result, our data implicates that overexpression of IMP2 has distinct effects to the regulatory capacity of miRNAs with yet unknown consequences for translational efficiency.


Assuntos
Fígado Gorduroso/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Ligação a RNA/genética , Animais , Sítios de Ligação , Fígado Gorduroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA/métodos , Regulação para Cima
12.
Genome Biol Evol ; 10(2): 646-656, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390087

RESUMO

Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont's contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host's cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the "killer trait." We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control.


Assuntos
Gammaproteobacteria/fisiologia , Paramecium/genética , Paramecium/microbiologia , Simbiose , Transcriptoma , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Paramecium/fisiologia , Fenótipo , Análise de Sequência de RNA
13.
Biochim Biophys Acta ; 1858(12): 3157-3168, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693913

RESUMO

Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Fosfolipases Tipo C/análise , Animais , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/enzimologia , Cílios/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Isoenzimas/análise , Modelos Moleculares , Coelhos , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA