Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(5): 695-698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081291

RESUMO

Tyloses are swellings of parenchyma cells into adjacent water-conducting cells that develop in vascular plants as part of heartwood formation or specifically in response to embolism and pathogen infection. Here we document tyloses in Late Devonian (approximately 360 Myr ago) Callixylon wood. This discovery suggests that some of the earliest woody trees were already capable of protecting their vascular system by occluding individual conducting cells.


Assuntos
Besouros , Ceratodermia Palmar e Plantar Difusa , Traqueófitas , Animais , Fósseis , Madeira , Árvores , Evolução Biológica
2.
BMC Res Notes ; 15(1): 251, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840995

RESUMO

OBJECTIVES: Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support. Little is known about how NSC impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits linked to hydraulic and mechanical functioning. DATA DESCRIPTION: The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm species from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to water transportation, mechanical support and storage. Data will also give researchers keys to understanding the ability of trees to adjust to a changing climate.


Assuntos
Árvores , Xilema , Carboidratos , Carbono/metabolismo , Folhas de Planta/metabolismo , Clima Tropical , Água , Xilema/metabolismo
3.
Plant Methods ; 13: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286541

RESUMO

BACKGROUND: Belowground processes play an essential role in ecosystem nutrient cycling and the global carbon budget cycle. Quantifying fine root growth is crucial to the understanding of ecosystem structure and function and in predicting how ecosystems respond to climate variability. A better understanding of root system growth is necessary, but choosing the best method of observation is complex, especially in the natural soil environment. Here, we compare five methods of root image acquisition using inexpensive technology that is currently available on the market: flatbed scanner, handheld scanner, manual tracing, a smartphone application scanner and a time-lapse camera. Using the five methods, root elongation rate (RER) was measured for three months, on roots of hybrid walnut (Juglans nigra × Juglans regia L.) in rhizotrons installed in agroforests. RESULTS: When all methods were compared together, there were no significant differences in relative cumulative root length. However, the time-lapse camera and the manual tracing method significantly overestimated the relative mean diameter of roots compared to the three scanning methods. The smartphone scanning application was found to perform best overall when considering image quality and ease of use in the field. The automatic time-lapse camera was useful for measuring RER over several months without any human intervention. CONCLUSION: Our results show that inexpensive scanning and automated methods provide correct measurements of root elongation and length (but not diameter when using the time-lapse camera). These methods are capable of detecting fine roots to a diameter of 0.1 mm and can therefore be selected by the user depending on the data required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA