Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunohorizons ; 8(8): 586-597, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39186692

RESUMO

Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1ß transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Poli(ADP-Ribose) Polimerase-1 , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Armadilhas Extracelulares/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inflamassomos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/imunologia , Camundongos Endogâmicos C57BL , Nigericina/farmacologia , Camundongos Knockout , Peritonite/metabolismo , Peritonite/imunologia , Lipopolissacarídeos/farmacologia , Caspase 1/metabolismo
2.
Front Cell Neurosci ; 15: 807170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35027884

RESUMO

Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.

3.
Viruses ; 12(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872283

RESUMO

Human noroviruses (HuNoVs) are the leading causative agents of epidemic and sporadic acute gastroenteritis that affect people of all ages worldwide. However, very few dose-response studies have been carried out to determine the median infectious dose of HuNoVs. In this study, we evaluated the median infectious dose (ID50) and diarrhea dose (DD50) of the GII.4/2003 variant of HuNoV (Cin-2) in the gnotobiotic pig model of HuNoV infection and disease. Using various mathematical approaches (Reed-Muench, Dragstedt-Behrens, Spearman-Karber, exponential, approximate beta-Poisson dose-response models, and area under the curve methods), we estimated the ID50 and DD50 to be between 2400-3400 RNA copies, and 21,000-38,000 RNA copies, respectively. Contemporary dose-response models offer greater flexibility and accuracy in estimating ID50. In contrast to classical methods of endpoint estimation, dose-response modelling allows seamless analyses of data that may include inconsistent dilution factors between doses or numbers of subjects per dose group, or small numbers of subjects. Although this investigation is consistent with state-of-the-art ID50 determinations and offers an advancement in clinical data analysis, it is important to underscore that such analyses remain confounded by pathogen aggregation. Regardless, challenging virus strain ID50 determination is crucial for identifying the true infectiousness of HuNoVs and for the accurate evaluation of protective efficacies in pre-clinical studies of therapeutics, vaccines and other prophylactics using this reliable animal model.


Assuntos
Infecções por Caliciviridae/virologia , Norovirus/fisiologia , Virologia/métodos , Animais , Modelos Animais de Doenças , Feminino , Gastroenterite/virologia , Vida Livre de Germes , Humanos , Masculino , Norovirus/genética , Norovirus/patogenicidade , Suínos , Virulência
4.
Prog Mol Biol Transl Sci ; 171: 15-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475521

RESUMO

The influence of the microbiota on viral infection susceptibility and disease outcome is undisputable although varies among viruses. The purpose of understanding the interactions between microbiota, virus, and host is to identify practical, effective, and safe approaches that target microbiota for the prevention and treatment of viral diseases in humans and animals, as currently there are few effective and reliable antiviral therapies available. The initial step for achieving this goal is to gather clinical evidences, focusing on the viral pathogens-from human and animal studies-that have already been shown to interact with microbiota. The subsequent step is to identify mechanisms, through experimental evidences, to support the development of translational applications that target microbiota. In this chapter, we review evidences of virus infections altering microbiota and of microbiota enhancing or suppressing infectivity, altering host susceptibility to certain viral diseases, and influencing vaccine immunogenicity in humans and farm animals.


Assuntos
Animais Domésticos/microbiologia , Doença/etiologia , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno , Microbiota/fisiologia , Viroses/microbiologia , Vírus/patogenicidade , Animais , Animais Domésticos/virologia , Trato Gastrointestinal/virologia , Humanos , Viroses/virologia
5.
J Gen Virol ; 100(11): 1530-1540, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31596195

RESUMO

The role of commensal microbiota in enteric viral infections has been explored extensively, but the interaction between human gut microbiota (HGM) and human norovirus (HuNoV) is poorly understood. In this study, we established an HGM-Transplanted gnotobiotic (Gn) pig model of HuNoV infection and disease, using an infant stool as HGM transplant and a HuNoV GII.4/2006b strain for virus inoculation. Compared to germ-free Gn pigs, HuNoV inoculation in HGMT Gn pigs resulted in increased HuNoV shedding, characterized by significantly higher shedding titres on post inoculation day (PID) 3, 4, 6, 8 and 9, and significantly longer mean duration of virus shedding. In addition, virus titres were significantly higher in duodenum and distal ileum of HGMT Gn pigs on PID10, while comparable and transient HuNoV viremia was detected in both groups. 16S rRNA gene sequencing demonstrated that HuNoV infection dramatically altered intestinal microbiota in HGMT Gn pigs at the phylum (Proteobacteria, Firmicutes and Bacteroidetes) and genus (Enterococcus, Bifidobacterium, Clostridium, Ruminococcus, Anaerococcus, Bacteroides and Lactobacillus) levels. In summary, enhanced GII.4 HuNoV infection was observed in the presence of HGM, and host microbiota was susceptible to disruption upon HuNoV infection.


Assuntos
Infecções por Caliciviridae/patologia , Disbiose , Microbioma Gastrointestinal , Interações Microbianas , Microbiota , Norovirus/crescimento & desenvolvimento , Animais , Sangue/virologia , Infecções por Caliciviridae/complicações , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Modelos Animais de Doenças , Duodeno/virologia , Transplante de Microbiota Fecal , Genótipo , Vida Livre de Germes , Humanos , Íleo/virologia , Norovirus/classificação , Norovirus/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Fatores de Tempo , Carga Viral , Eliminação de Partículas Virais
6.
Comp Med ; 67(2): 157-164, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381316

RESUMO

Diarrheal disease is the second leading cause of death in children younger than 5 y, and the most common cause of acute watery diarrhea in young children worldwide is rotaviral infection. Medicines to specifically reduce diarrhea would be a desirable adjunctive treatment to supportive fluid therapy to decrease the mortality rate of diarrheal diseases. In this study, we evaluated the efficacy of an antisecretory drug, racecadotril, in treating human rotavirus (HRV)-induced diarrhea in a neonatal gnotobiotic pig model. In total, 27 gnotobiotic pigs were randomly assigned (n = 9 per group) to receive either racecadotril, chlorpromazine (positive-control drug), or PBS (mock treatment) after inoculation with HRV. Pigs were weighed daily and rectal swabs were collected to determine fecal consistency scores and virus shedding. Rotaviral infection was confirmed by ELISA and cell culture immunofluorescence. Overall, the racecadotril-treated pigs had less severe illness than either the chlorpromazine- or mock-treated groups; this conclusion was supported by the lower fecal-consistency scores, shorter duration of diarrhea, and significant gain in body weight during the course of the study of the racecadotril-treated pigs. Through its influence on decreasing intestinal hypersecretion, racecadotril was better able to control the clinical signs of rotaviral infection in the gnotobiotic pigs. These results lend support for using racecadotril as a treatment for rotaviral diarrhea.


Assuntos
Antidiarreicos/uso terapêutico , Diarreia/tratamento farmacológico , Infecções por Rotavirus/tratamento farmacológico , Tiorfano/análogos & derivados , Animais , Diarreia/virologia , Avaliação Pré-Clínica de Medicamentos , Rotavirus , Sus scrofa , Tiorfano/uso terapêutico , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA