Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbon Lett (Korean Carbon Soc) ; 34(5): 1343-1354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015541

RESUMO

Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.

2.
Adv Colloid Interface Sci ; 317: 102920, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207377

RESUMO

Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Hidrogéis , Técnicas Biossensoriais/métodos , Proteínas , Condutividade Elétrica
3.
ACS Appl Nano Mater ; 4(1): 33-42, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-34355133

RESUMO

Single-walled carbon nanotubes (SWNT) are attractive targets for the formation of high-density sensor arrays. Their small size and high reactivity could allow for the spatial and temporal study of extracellular products to a degree which greatly surpasses contemporary sensors. However, current methods of SWNT immobilization produce a low fluorescence yield that requires a combination of high magnification, exposure time, and laser intensity to combat, thus limiting the sensor's applications. In this work, a platform for the immobilization of SWNT sensors with increased fluorescence yield, longevity, fluorescence distribution, and fast reaction times is developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA