Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0087523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623317

RESUMO

IMPORTANCE: To counteract infection with phage, bacteria have evolved a myriad of molecular defense systems. Some of these systems initiate a process called abortive infection, in which the infected cell kills itself to prevent phage propagation. However, such systems must be inhibited in the absence of phage infection to prevent spurious death of the host. Here, we show that the cyclic oligonucleotide based anti-phage signaling system (CBASS) accomplishes this by sensing intracellular folate molecules and only expressing this system in a group. These results enhance our understanding of the evolution of the seventh Vibrio cholerae pandemic and more broadly how bacteria defend themselves against phage infection.


Assuntos
Bacteriófagos , Vibrio cholerae , Vibrio cholerae/metabolismo , Percepção de Quorum/fisiologia , Bacteriófagos/genética , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 115(26): E6048-E6055, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891656

RESUMO

Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3', 3'-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5' of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Nucleotídeos Cíclicos/metabolismo , Fosfolipases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Membrana Celular/genética , Nucleotídeos Cíclicos/genética , Fosfolipases/genética , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA